The anticancer drug cyclophosphamide (CP) has nephrotoxic effects besides its urotoxicity, which both in turn limit its clinical utility. The nephrotoxicity of CP is less common compared to its urotoxicity, and not much importance has been given for the study of mechanism of CP-induced nephrotoxicity so far. Overproduction of reactive oxygen species (ROS) during inflammation is one of the reasons of the kidney injury. Selenoproteins play crucial roles in regulating ROS and redox status in nearly all tissues; therefore, in this study, the nephrotoxicity of CP and the possible protective effects of seleno L-methionine (SLM) on rat kidneys were investigated. Forty-two Sprague-Dawley rats were equally divided into six groups of seven rats each. The control group received saline, and other rats were injected with CP (100 mg/kg), SLM (0.5 or 1 mg/kg), or CP+ SLM intraperitoneally. Malondialdehyde (MDA) and glutathione (GSH) levels in kidney homogenates of rats were measured, and kidney tissues were examined under the microscope. CP-treated rats showed a depletion of renal GSH levels (28% of control), while CP+SLM-injected rats had GSH values close to the control group. MDA levels increased 36% of control following CP administration, which were significantly decreased after SLM treatment. Furthermore, these biochemical results were supported by microscopical observations. In conclusion, the present study not only points to the therapeutic potential of SLM in CP-induced kidney toxicity but also indicates a significant role for ROS and their relation to kidney dysfunction.
There is a very little information about the protective effect of lycopene (LYC) against hepatic ischemia–reperfusion injury. The present study was designed to examine the possible protective effect of the strong antioxidant and anti-inflammatory agent, LYC, on hepatic ischemia/reperfusion injury. For this purpose, rats were subjected to 45 min of hepatic ischemia followed by 60 min of reperfusion period. LYC at the doses of 2.5 and 5 mg/kg body weight (bw) were injected intraperitoneally, 60 min prior to ischemia. Upon sacrification, hepatic tissue samples were used for the measurement of catalase (CAT) activity and malondialdehyde (MDA) levels. Also, aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) were assayed in serum samples. As a result of the use of LYC at the doses of 2.5 and 5 mg/kg bw; while improvements of the ALT, AST, LDH and MDA values were partial and dose-dependent, the improvement of CAT activity was total and dose-independent (p < 0.05). Our findings suggest that LYC has a protective effect against ischemia/reperfusion injury on the liver.
Cyclophosphamide (CP) is a widely used antineoplastic drug, which could cause toxicity of the normal cells due to its toxic metabolites. Its urotoxicity may cause doselimiting side effects like hemorrhagic cystitis. Overproduction of reactive oxygen species (ROS) during inflammation is one of the reasons of the urothelial injury. Selenoproteins play crucial roles in regulating ROS and redox status in nearly all tissues; therefore, in this study, the urotoxicity of CP and the possible protective effects of seleno-L-methionine (SLM) on urinary bladder of rats were investigated. Intraperitoneal (i.p.) administration of 50, 100, or 150 mg/kg CP induced cystitis, in a dose-dependent manner, as manifested by marked congestion, edema and extravasation in rat urinary bladder, a marked desquamative damage to the urothelium, severe inflammation in the lamina propria, focal erosions, and polymorphonuclear (PMN) leukocytes associated with occasional lymphocyte infiltration determined by macroscopic and histopathological examination. In rat urinary bladder tissue, a significant decrease in the endogenous antioxidant compound glutathione, and elevation of lipid peroxidation were also noted. Pretreatment with SLM (0.5 or 1 mg/kg) produced a significant decrease in the bladder edema and caused a marked decrease in vascular congestion and hemorrhage and a profound improvement in the histological structure. Moreover, SLM pretreatment decreased lipid peroxide significantly in urinary bladder Biol Trace Elem Res (2010) 134:98-108
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.