Different types of noncoding RNAs like microRNAs (miRNAs) and circular RNAs (circRNAs) have been shown to take part in various cellular processes including post-transcriptional gene regulation during infection. MiRNAs are expressed by more than 200 organisms ranging from viruses to higher eukaryotes. Since miRNAs seem to be involved in host–pathogen interactions, many studies attempted to identify whether human miRNAs could target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNAs as an antiviral defence mechanism. In this work, a machine learning based miRNA analysis workflow was developed to predict differential expression patterns of human miRNAs during SARS-CoV-2 infection. In order to obtain the graphical representation of miRNA hairpins, 36 features were defined based on the secondary structures. Moreover, potential targeting interactions between human circRNAs and miRNAs as well as human miRNAs and viral mRNAs were investigated.
We show that, for hereditary rings, the smallest proper classes containing respectively the classes of short exact sequences determined by small submodules, submodules that have supplements and weak supplement submodules coincide. Moreover, we show that this class can be obtained as a natural extension of the class determined by small submodules. We also study injective, projective, coinjective and coprojective objects of this class. We prove that it is coinjectively generated and its global dimension is at most 1. Finally, we describe this class for Dedekind domains in terms of supplement submodules.
We introduce modules whose injectivity domains are contained in the class of modules with zero radical and call them working-class. This notion gives a generalization of poor modules that have minimal injectivity domain. Semisimple working-class modules always exist for arbitrary rings whereas their predecessors do not. We investigate the rings over which every module is either injective or working-class. Right weakly V-rings are examples of these rings. Moreover, we study the existence of workingclass simple modules and show that if there is a projective working-class simple right module, then the ring is a right GV-ring.
Abstract. In this paper, we define and study weakly distributive modules as a proper generalization of distributive modules. We prove that, weakly distributive supplemented modules are amply supplemented. In a weakly distributive supplemented module every submodule has a unique coclosure. This generalizes a result of Ganesan and Vanaja. We prove that π -projective duo modules, in particular commutative rings, are weakly distributive. Using this result we obtain that in a commutative ring supplements are unique. This generalizes a result of Camillo and Lima. We also prove that any weakly distributive ⊕-supplemented module is quasi-discrete.
In this work, impecunious modules are introduced as modules whose injectivity domains are contained in the class of all pure-split modules. This notion gives a generalization of both poor modules and pure-injectively poor modules. Properties involving impecunious modules as well as examples that show the relations between impecunious modules, poor modules and pure-injectively poor modules are given. Rings over which every module is impecunious are right pure-semisimple. A commutative ring over which there is a projective semisimple impecunious module is proved to be semisimple artinian. Moreover, the characterization of impecunious abelian groups is given. It states that an abelian group [Formula: see text] is impecunious if and only if for every prime integer [Formula: see text], [Formula: see text] has a direct summand isomorphic to [Formula: see text] for some positive integer [Formula: see text]. Consequently, an example of an impecunious abelian group which is neither poor nor pure-injectively poor is given so that the generalization defined is proper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.