Despite advanced sterilization and aseptic techniques, infections associated with medical implants have not been eradicated. Most present coatings cannot simultaneously fulfil the requirements of antibacterial and antifungal activity as well as biocompatibility and reusability. Here, we report an antimicrobial hydrogel based on dimethyldecylammonium chitosan (with high quaternization)-graft-poly(ethylene glycol) methacrylate (DMDC-Q-g-EM) and poly(ethylene glycol) diacrylate, which has excellent antimicrobial efficacy against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Fusarium solani. The proposed mechanism of the antimicrobial activity of the polycationic hydrogel is by attraction of sections of anionic microbial membrane into the internal nanopores of the hydrogel, like an 'anion sponge', leading to microbial membrane disruption and then microbe death. We have also demonstrated a thin uniform adherent coating of the hydrogel by simple ultraviolet immobilization. An animal study shows that DMDC-Q-g-EM hydrogel coating is biocompatible with rabbit conjunctiva and has no toxicity to the epithelial cells or the underlying stroma.
Facilely synthesized cationic peptidopolysaccharides, which have a bacterial peptidoglycan‐mimetic structure, show outstanding broad‐spectrum activities against clinically significant bacteria and fungi and low mammalian cytotoxicity. Their structural affinity with microbial cell‐wall constituents promotes penetration to reach the cytoplasmic membrane resulting in excellent antimicrobial activity and high selectivity.
Chitosan and its various neutral pH water-soluble derivatives were investigated for dispersing single-walled carbon nanotubes (SWNTs). Chitosan (CS) can produce good dispersion of SWNTs, but only in acidic pH condition. Our two novel derivatives, O-carboxymethylchitosan (OC) and OC modified by poly(ethylene glycol) at the −COOH position (OPEG), were able to produce highly effective debundling and dispersion of SWNTs in neutral pH aqueous solution. Atomic force microscopy (AFM), transmission electron microscopy (TEM), photoluminescence, UV−vis−NIR spetroscopy, and Raman spectroscopy confirmed that SWNTs are present as individual nanotubes in the dispersions. The solubilities of individually dispersed SWNTs in neutral water are 0.021 and 0.032 g/L for OC and OPEG, respectively, which are comparable to 0.038 g/L for SWNTs using CS in acetic acid. Further, OC and OPEG aqueous solutions (1 wt %) do not significantly lower the surface tensions (65−67 mN/m). From the Fourier transform infrared spectroscopic results, we conclude that the free electron pair in the pendant amine groups of OC and OPEG plays a vital role in finely dispersing the SWNTs; the −NH2 contributes to the adsorption of these two chitosan derivatives on the nanotubes. Quaternary ammonium chitosan (QC), with alkyl substitution at the protonated amine, was found to be unable to disperse SWNTs; possibly cation−π interaction with nanotubes is diminished due to steric hindrance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.