The anti-oxidative phenolic compounds in plant extracts possess multiple pharmacological functions. However, the phenolic characterization and in vitro bio-activities in various parts of raspberry (Rubus idaeus L.) have not been investigated systematically. In the present study, the phenolic profiles of leaves (LE), fruit pulp (FPE), and seed extracts (SE) in raspberry were analyzed by HR-HPLC-ESI-qTOF-MS/MS method, and their antioxidant activities and digestive enzymes inhibitory abilities were also investigated. The molecular docking analysis was used to delineate their inhibition mechanisms toward type II diabetes related digestive enzymes. Regardless of LE, FPE, or SE, 50% methanol was the best solvent for extracting high contents of phenolic compounds, followed by 50% ethanol and 100% methanol. The LE of raspberry displayed the highest total phenolic content (TPC) and total flavonoid content (TFC). A total of nineteen phenolic compounds were identified. The quantitative results showed that gallic acid, ellagic acid, and procyanidin C3 were the major constituents in the three extracts. The various parts extracts of raspberry all exhibited the strong antioxidant activities, especially for LE. Moreover, the powerful inhibitory effects of the three extracts against digestive enzymes (α-glucosidase and α-amylase) were observed. The major phenolic compounds of the three extracts also showed good inhibitory activities of digestive enzyme in a dose-dependent manner. The underlying inhibitory mechanisms of the main phenolic compounds against digestive enzymes were clarified by molecular docking analysis. The present study demonstrated that the various parts of raspberry had strong antioxidant activities and inhibitory effects on digestive enzymes, and can potentially prevent oxidative damage or diabetes-related problems.
Long chain branched structure (LCBs) is the critical to upgrade the poly (lactic acid) (PLA) melt performance, while introducing LCBs via chain restructuring by melt transesterification features higher-efficiency, environment-friendly and gel-free properties. However, severe degradation associated with excessive transesterification renders the branching reaction non-dominant, resulting in a significantly narrow processing window for LCBs formation. Herein, a new strategy, dual hybrid branching (DHB), was put forward to overcome the challenges. Specifically, surface-aminated nano-ZnO (SAN-ZnO) was applied as a transesterification accelerant to prepare LCB-PLA via melt transesterification between high molecular weight PLA and low molar mass monomer trimethylolpropane triacrylate (TMPTA) in an internal mixer. Moreover, amidogens on the surface of SAN-ZnO was capable to collect the degraded PLA chains (PLA-COOH) and in situ react with their carboxyl thermal groups via amidation. Benefiting from DHB to facilitate LCBs formation and restrain excessive degradation, the melt performance of PLA, especially the melt strength, was obviously improved to over 37 cN compared with pristine PLA (4 cN), and the cold crystallization occurred earlier owing to the DHB chain structure.
Arylsulfatase, one of a few enzymes that can enhance the gelling strength of agar by cleaving the sulfate ester bonds in agar, was covalently immobilized with carboxyl functioned magnetic nanoparticles (CMNPs). The resultant CMNPs and immobilized arylsulfatase were characterized by
transmission electron microscopy (TEM), Dynamic Light scattering (DLS), X-ray diffraction (XRD), vibrating sample magnetometry (VSM) and thermogravimetric analysis (TGA). The TEM result indicated that the CMNPs and immobilized arylsulfatase had a similar mean particle size of 10 nm. The arylsulfatase-CMNPs
had a mean diameter of 1200 nm in aqueous solution determined by the DLS, which was much bigger than the CMNPs (433.6 nm). The different sizes demonstrated that the arylsulfatase was coated on CMNPs successfully. XRD showed that diffraction patterns of the CMNPs and arylsulfatase-CMNPs were
close to the standard XRD pattern of Fe3O4. Saturation magnetizations were 52.1 emu/g for carriers and 47.9 emu/g for immobilized arylsulfatase, which indicated that the particles had superparamagnetic characteristics. The TGA revealed that the amount of arylsulfatase
bound to the surface of CMNPs was 5.65%. The arylsulfatase exhibited better thermal stability and reusability after immobilization, the immobilized arylsulfatase can retain more than 50% enzyme activity up to the 9th cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.