Abstract. Surface O3 pollution has become one of the most severe air pollution problems in China, which makes it of practical importance to understand O3 variability. A south-north dipole pattern of summer-mean O3 concentration in the east of China (DP-O3), which were centered at North China (NC) and the Pearl River Delta (PRD) respectively, has been identified from the simulation of a global 3-D chemical transport model for the period 1980–2019. Large-scale anticyclonic (cyclonic) and cyclonic (anticyclonic) anomalies over NC and the PRD resulted in a sharp contrast of meteorological conditions between the above two regions. The enhanced (restrained) photochemistry and natural emissions of O3 precursors in NC and restrained (enhanced) O3 production in the PRD contributed to the DP-O3. Decreased sea ice anomalies near the Franz Josef Land and associated warm sea surface in May enhanced the Rossby-wave source over northern Europe and West Siberia, which eventually induced an anomalous Eurasia-like pattern to influence the formation of the DP-O3. The thermodynamic signals of the southern Indian Ocean dipole were stored in the subsurface and influenced spatial pattern of O3 pollution in the east of China mainly through the Hadley circulation. The physical mechanisms behind the modulation of the atmospheric circulations and related DP-O3 by these two climate anomalies at different latitudes were evidently verified by large-scale ensemble simulations of the earth system model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.