We present a new method for motion planning for control systems. The method aims to provide a natural computational framework in which a broad class of motion planning problems can be cast; including problems with holonomic and non-holonomic constraints, drift dynamics, obstacle constraints and constraints on the magnitudes of the applied controls. The method, which finds its inspiration in recent work on the so-called geometric heat flows and curve shortening flows, relies on a hereby introduced partial differential equation, which we call the affine geometric heat flow, which evolves an arbitrary differentiable path joining initial to final state in configuration space to a path that meets the constraints imposed on the problem. From this path, controls to be applied on the system can be extracted. We provide conditions guaranteeing that the controls extracted will drive the system arbitrarily close to the desired final state, while meeting the imposed constraints and illustrate the method on three canonical examples.
We propose in this paper a motion planning method for legged robot locomotion based on Geometric Heat Flow framework. The motion planning task is challenging due to the hybrid nature of dynamics and contact constraints. We encode the hybrid dynamics and constraints into Riemannian inner product, and this inner product is defined so that short curves correspond to admissible motions for the system. We rely on the affine geometric heat flow to deform an arbitrary path connecting the desired initial and final states to this admissible motion. The method is able to automatically find the trajectory of robot's center of mass, feet contact positions and forces on uneven terrain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.