Significant effect of semiconductor properties on domain configurations in ferroelectrics is demonstrated, especially in the case of doped materials. Phase field simulations are performed for ferroelectrics with space charges due to donors and electronic charge carriers. The free charges introduced thereby can act as a source for charge compensation at domain walls with uncompensated polarization bound charges. Results indicate that the equilibrium position of a domain wall with respect to its rotation in a head-to-head or a tail-to-tail domain configuration depends on the charge defect concentration and the Fermi level position. V
The effect of the polarization charge compensation by ionic and electronic space charges on domain properties in ferroelectrics with semiconducting features is considered, in particular, the conductivity of head-to-head and tail-to-tail domain walls is studied. It is shown that the domain wall conductivity that is enhanced by electrons or holes depends on the configuration and the types of domains as well as on the energy levels and concentrations of the defects involved. Phase field simulation results are used to explain recent equivocal experimental results on conductivity of charged domain walls in different ferroelectrics.
Satellite video single object tracking has attracted wide attention. The development of remote sensing platforms for earth observation technologies makes it increasingly convenient to acquire high-resolution satellite videos, which greatly accelerates ground target tracking. However, overlarge images with small object size, high similarity among multiple moving targets, and poor distinguishability between the objects and the background make this task most challenging. To solve these problems, a deep Siamese network (DSN) incorporating an interframe difference centroid inertia motion (ID-CIM) model is proposed in this paper. In object tracking tasks, the DSN inherently includes a template branch and a search branch; it extracts the features from these two branches and employs a Siamese region proposal network to obtain the position of the target in the search branch. The ID-CIM mechanism was proposed to alleviate model drift. These two modules build the ID-DSN framework and mutually reinforce the final tracking results. In addition, we also adopted existing object detection datasets for remotely sensed images to generate training datasets suitable for satellite video single object tracking. Ablation experiments were performed on six high-resolution satellite videos acquired from the International Space Station and “Jilin-1” satellites. We compared the proposed ID-DSN results with other 11 state-of-the-art trackers, including different networks and backbones. The comparison results show that our ID-DSN obtained a precision criterion of 0.927 and a success criterion of 0.694 with a frames per second (FPS) value of 32.117 implemented on a single NVIDIA GTX1070Ti GPU.
Tuberculosis (TB) remains a major global health issue, resulting in around 1.5 million people deaths each year. Better diagnostic and therapeutic tools are urgently needed. Circular RNAs (circRNAs) are a new class of noncoding RNAs with a covalently closed structure, and exhibit a tissue-, cell-, and developmental stage-specific expression pattern. Recently, circRNAs were thought to be regulatory molecules implicated in the onset and progression of a series of human diseases including tuberculosis. In tuberculosis, circRNAs have been shown to regulate host anti-TB immune responses, such as decreasing monocyte apoptosis, enhancing autophagy and promoting macrophage polarization. Importantly, circRNAs are physically stable and abundant in several types of body fluids. Therefore they are considered as promising minimally-invasive biomarkers. In this review, we focus on the recent advances in the immune regulatory roles of circRNAs, as well as their potential diagnostic value in TB.
The stable polarization distributions of freestanding ferroelectric nanotubes with different surface charges are investigated numerically using a phase field model based on the time-dependent Ginzburg – Landau equation. For a nanotube without surface charges, a pure vortex structure is formed as a result of the energy minimization. When the uniform surface charges are applied on the upper and lower surfaces, the out-of-plane components become nonzero. The out-of-plane components of polarizations are found to be proportional to the density of surface charge. When the density of surface charge exceeds a critical value, the in-plane components of polarizations disappear. This makes ferroelectric nanotubes experience an unusual transition from a vortex state to a single-domain state. Due to the different geometries, the critical charge density for the transition in nanotubes is larger than that of nanodots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.