Sirtuin 6 (SIRT6) is a NAD-dependent deacetylase involved in lifespan regulation. To evaluate the effect of SIRT6 on osteogenesis, rat bone marrow mesenchymal stem cells (rBMSCs) with enhanced or reduced SIRT6 function were developed. We observed that SIRT6 knockdown significantly reduced the mRNA levels of several key osteogenic markers in vitro, including alkaline phosphatase (ALP), Runt-related transcription factor 2 (RUNX2), and osteocalcin, while overexpression of SIRT6 enhanced their expression. Additionally, SIRT6 knockdown activated nuclear factor-jB (NF-jB) transcriptional activity and upregulated the expression of acetyl-NF-jB p65 (Lys310). The decreased osteogenic differentiation ability of rBMSCs could be partially rescued by the addition of NF-jB inhibitor BAY 11-7082. Furthermore, SIRT6 overexpression in rBMSCs combined with the use of collagen/chitosan/hydroxyapatite scaffold could significantly boost new bone formation in rat cranial critical-sized defects, as determined by microcomputed tomography and histological examination. These data confirm that SIRT6 is mainly located in the nuclei of rBMSCs and plays an essential role in their normal osteogenic differentiation, partly by suppressing NF-jB signaling.
This paper studies, for the first time, the trajectory planning problem in adversarial environments, where the objective is to design the trajectory of a robot to reach a desired final state despite the unknown and arbitrary action of an attacker. In particular, we consider a robot moving in a two-dimensional space and equipped with two sensors, namely, a Global Navigation Satellite System (GNSS) sensor and a Radio Signal Strength Indicator (RSSI) sensor. The attacker can arbitrarily spoof the readings of the GNSS sensor and the robot control input so as to maximally deviate its trajectory from the nominal precomputed path. We derive explicit and constructive conditions for the existence of undetectable attacks, through which the attacker deviates the robot trajectory in a stealthy way. Conversely, we characterize the existence of secure trajectories, which guarantee that the robot either moves along the nominal trajectory or that the attack remains detectable. We show that secure trajectories can only exist between a subset of states, and provide a numerical mechanism to compute them. We illustrate our findings through several numerical studies, and discuss that our methods are applicable to different models of robot dynamics, including unicycles. More generally, our results show how control design affects security in systems with nonlinear dynamics.
The aim of this study was to investigate the effects of different direct current intensities on dentine bonding effectiveness of Clearfil S(3) Bond and on cell viability of human dental pulp cells (HDPCs). Thirty-five-third molars were sectioned and ground to provide flat surfaces. Clearfil S(3) Bond was applied under different current conditions for 30 s and then resin composite was built up. Specimens were processed for microtensile bond strength (µTBS) testing and for nanoleakage investigation using scanning electron microscopy. Primary HDPCs isolated from premolars were stimulated with different intensities of electric current for 30 s. Then, cell viability was tested using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Specimens bonded with application of electrical current intensities of 50, 60, 70, and 90 µA exhibited a significant increase in immediate µTBS compared with all other groups. Bonded interfaces prepared using electrically assisted current application showed reduced interfacial nanoleakage upon scanning electron microscopy. Electric current application, from 20 to 70 µA, had no effect on the viability of HDPCs. This study provides further evidence for its future clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.