Bismuth oxychloride (BiOCl) nanowire arrays have been successfully prepared employing the Anodic Aluminum Oxide (AAO) template assisted sol-gel method. Nanowires of 100 nm diameter and length 2-6 μm, assembled in the porous of AAO templates, were formed. XRD and HRTEM results show that the nanowires are pure BiOCl polycrystal phase without Bi 2 O 3 or BiCl 3 . The photocatalytic activity of BiOCl nanowire arrays was investigated by the degradation of Rhodamine B dye solution under UV irradiation. *Corresponding
The synthesis of lotus-root-like NiO nanosheets and flower-like NiO microspheres was realized through a simple hydrothermal method and subsequent calcination. The diameter of the lotus-root-like NiO nanosheets is about 400 nm and the pore size is about 5$20 nm. The diameter of the flower-like NiO microspheres is about 2.5 mm, and are composed of staggered lotus-root-like nanosheets. During the synthetic procedure, aqueous ammonia was used as an alkaline complexing reagent, and PVP was used as the template. Interestingly, when the pH value of the precursor solution increased from 8.30 to 10.80, the NiO nanosheets gradually assembled into microspheres, indicating that aqueous ammonia plays a key role in controlling the final morphology. Based on the experimental observation and analysis, a possible mechanism is proposed to understand the formation of the NiO nanostructured materials. In addition, the resultant NiO nanostructures present anomalous magnetic properties and display a spin-glass state at low temperature.
Bismuth oxycholoride (BiOCl) nano/microstructures, including flake and nanowire arrays, were successfully synthesized on Anodic Aluminum Oxide (AAO) templates via sol-gel combined with the vacuum air-extraction method. The flakes are almost vertically aligned on the surface, but nanowire arrays at a lower sol concentration are aligned along the channels. A possible formation mechanism is proposed. Furthermore, the photocatalytic activity of the BiOCl nano/microstructures is investigated by photocatalytic decomposition of Rhodamine B (Rh B) dye under UV-Visible light irradiation. Compared with the BiOCl flake film on the glass substrate, where the flakes are horizontally oriented on the surface, the vertically aligned flake and nanowire arrays on AAO templates, have a higher photocatalytic efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.