Stem/progenitor cells serve an important role in the process of blood vessel repair. However, the mechanism of vascular repair mediated by C-X-C chemokine receptor type 4-positive (CXCR4+) bone marrow-derived mesenchymal stem cells (BMSCs) following myocardial infarction remains unclear. The aim of the present study was to investigate the effects of vascular endothelial growth factor (VEGF) on vessel endothelial differentiation from BMSCs. CXCR4+ BMSCs were isolated from the femoral bone marrow of 2-month-old mice and the cells were treated with VEGF. Expression of endothelial cell markers and the functional properties were assessed by reverse transcription-quantitative polymerase chain reaction, flow cytometry and vascular formation analyses. The results indicated that the CXCR4+ BMSCs from femoral bone marrow cells expressed putative cell surface markers of mesenchymal stem cells. Treatment with VEGF induced platelet/endothelial cell adhesion molecule-1 (PECAM-1) and von Willebrand factor (vWF) expression at the transcriptional and translational levels, compared with untreated controls. Moreover, VEGF treatment induced CXCR4+ BMSCs to form hollow tube-like structures on Matrigel, suggesting that the differentiated endothelial cells had the functional properties of blood vessels. The results demonstrate that the CXCR4+ BMSCs were able to differentiate into vessel endothelial cells following VEGF treatment. For cell transplantation in vascular disease, it may be concluded that CXCR4+ BMSCs are a novel source of endothelial progenitor cells with high potential for application in vascular repair.
Myocardial ischemia/reperfusion (I/R) injury is a clinical challenge in the treatment of acute myocardial infarction (AMI). Phosphodiesterase 4B (PDE4B) expression is upregulated in AMI tissues. Thus, the present study aimed to investigate the role of PDE4B in myocardial I/R injury. H9c2 cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) to establish an in vitro myocardial I/R model. PDE4B expression was detected via reverse transcription-quantitative PCR (RT-qPCR) and western blotting before and after transfection with PDE4B interference plasmids in H/R-stimulated H9c2 cells. Cell viability and cytotoxicity were assessed using the Cell Counting Kit-8 and lactate dehydrogenase assays, respectively. Furthermore, oxidative stress was assessed using malondialdehyde, superoxide dismutase and glutathione/glutathione oxidized ratio detection kits. Cell apoptosis was detected via a TUNEL assay and western blotting. c-Jun dimerization protein 2 (JDP2) expression was also detected via RT-qPCR and western blotting. The dual luciferase reporter and chromatin immunoprecipitation assays were performed to verify the interaction between JDP2 and PDE4B. Following co-transfection with PDE4B interference plasmid and JDP2 overexpression plasmid, cell viability, cytotoxicity, oxidative stress and cell apoptosis were assessed. The results demonstrated that PDE4B knockdown reversed H/R-induced loss of viability and cytotoxicity of H9c2 cells. H/R-induced oxidative stress and cardiomyocyte apoptosis were also alleviated by PDE4B knockdown. In addition, the transcription factor JDP2 was expressed at high levels in H/R-stimulated H9c2 cells, and JDP2 overexpression upregulated PDE4B expression. Notably, JDP2 overexpression partly reversed the ameliorative effect of PDE4B knockdown on H/R-induced H9c2 injury. Taken together, the results of the present study suggested that JDP2-activated PDE4B contributed to H/R-induced H9c2 cell injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.