Facing the scientific question of the origin of chirality in life, water is considered to play a crucial role in driving many biologically relevant processes in vivo. Water has been demonstrated in vitro to be related to chiral generation, amplification, and inversion, while the underlying mechanism is still not fully understood. Real-space evidence at the single-molecule level is thus urgently required to understand the role of water molecules in biomolecular chirality related issues. Herein, we choose one of the RNA bases, the biomolecule uracil (U), which selfassembles into racemic hydrogen-bonded structures. Upon water exposure, surprisingly, racemic structures could be transformed to homochiral waterinvolved structures, resulting in an unexpected chiral separation on the surface. The origin of chiral separation is due to preferential binding between water and the specific site of U molecules, which leads to the formation of the energetically most favorable homochiral (U−H 2 O−U) 2 cluster as seed for subsequent chiral amplification. Such a water-driven self-assembly process may also be extended to other biologically relevant systems such as amino acids and sugars, which would provide general insights into the role that water molecules may play in the origin of homochirality in vivo.
A new elevated-temperature high-strength Mg–4Er–2Y–3Zn–0.4Mn (wt %) alloy was developed by semi-continuous casting, solid solution treatment, and hot extrusion. W phase (Mg3(Er,Y)2Zn3) with fcc structure, long period stacking ordered phases with 18R (Mg10(Er,Y)1Zn1) and 14H (Mg12(Er,Y)1Zn1) structures, and basal plane stacking faults (SFs) was formed in the as-cast alloy, mainly due to the alloy component of (Er + Y)/Zn = 1:1 and Er/Y = 1:1 (at %). After solid solution treatment and hot extrusion, the novel microstructure feature formed in as-extruded alloy is the high number-density nanospaced basal plane SFs throughout all the dynamically recrystallized (DRXed) and un-DRXed grains, which has not been previously reported. The as-extruded alloy exhibits superior tensile properties from room temperature to 300 °C. The tensile yield strength can be maintained above 250 MPa at 300 °C. The excellent elevated-temperature strength is mainly ascribed to the formation of nanospaced basal plane SFs throughout the whole Mg matrix, fine DRXed grains ~2 μm in size, and strongly basal-textured un-DRXed grains with profuse substructures. The results provide new opportunities for the development of deformed Mg alloys with satisfactory mechanical properties for high-temperature services.
The A359-SiCp/Fe interpenetrating phase composites reinforced with three-dimensional network structure iron foam and 20 wt. % SiC particles were fabricated after the infiltration technique by using the newly developed vacuum assisted infiltration procedures. The dry-sliding tribological behavior of A359-SiCp/Fe composites was investigated using the HT-1000 ball-on-disc type high temperature tribometer. The samples were subjected to a variety of temperatures and applied loads to investigate the influence on the wear rate and friction coefficient. In this study, SEM was used to analyses the wear microscopic morphology of A359-SiCp/Fe composites reinforced by iron foam. The wear longitudinal section and the morphology of the wear debris were analyzed by EDS and determined to explore the high-temperature wear mechanism under different temperatures and loads. Hardness analysis from the outer periphery to the core revealed an improvement in hardness. The hardness distribution of the wear longitudinal section is different at different temperatures. The formation of a high-hardness mechanical mixed layer with a different thickness on the wear surface can effectively reduce the wear rate. Microstructural investigations demonstrated that the change in wear debris shape with increasing temperature is mostly related to the change in wear mechanism. Abrasive wear and oxidation wear are the main wear mechanisms. With an increase in temperature and plastic deformation, delamination and adhesion are the predominant wear mechanisms, accompanied by the additional oxidative wear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.