The ranging accuracy of pulsed time-of-flight (TOF) lidar is affected by walk error and jitter error. To solve the issue, the balanced detection method (BDM) based on fiber delay optic lines (FDOL) is proposed. The experiments are carried out to prove the performance improvement of BDM over the conventional single photodiode method (SPM). The experimental results show that BDM can suppress common mode noise and simultaneously shift the signal to high frequency, which reduces the jitter error by approximately 52.4% and maintains the walk error at less than 300 ps with a non-distorted waveform. The BDM can be further applied to silicon photomultipliers.
Laser sensing has been applied in various underwater applications, ranging from underwater detection to laser underwater communications. However, there are several great challenges when profiling underwater turbulence effects. Underwater detection is greatly affected by the turbulence effect, where the acquired image suffers excessive noise, blurring, and deformation. In this paper, we propose a novel underwater turbulence detection method based on a gated wavefront sensing technique. First, we elaborate on the operating principle of gated wavefront sensing and wavefront reconstruction. We then setup an experimental system in order to validate the feasibility of our proposed method. The effect of underwater turbulence on detection is examined at different distances, and under different turbulence levels. The experimental results obtained from our gated wavefront sensing system indicate that underwater turbulence can be detected and analyzed. The proposed gated wavefront sensing system has the advantage of a simple structure and high detection efficiency for underwater environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.