The compliance effect of a high-speed ballscrew feed-drive system is modelled in this work. A mechanical model of a ball-screw feed drive system including the motor, ball-screw, coupling, supporting bearing, linear guide and machine structure was developed. It was found that at high acceleration, the mechanical compliance caused a significant contouring error. Smoothing the acceleration and deceleration control input command did improve the transient deviation in the contouring error. However, the steady state error caused by the elastic elongation in the mechanical elements was not improved. It was also shown that the inertia force of the slide and saddle comprised the dominant loading on a high speed machine tool drive mechanism. A topology structure optimisation method is proposed to reduce the moving weight. This method can help the designer efficiently reduce the moving weight of a machine tool axis in a systematic way. More than a 30% weight reduction was demonstrated in a spindle carrier structural design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.