Pulsed laser deposition (PLD) is a technique which utilizes a high energy pulsed laser ablation of targets to deposit thin films on substrates in a vacuum chamber. The high-intensity laser pulses create a plasma plume from the target material which is projected towards the substrate whereupon it condenses to deposit a thin film. Here we investigate the properties of vanadium oxide thin films prepared utilizing two variations of the pulsed laser deposition (PLD) technique: femtosecond PLD and nanosecond PLD. Femtosecond PLD (f-PLD) has a significantly higher peak intensity and shorter duration laser pulse compared to that of the excimer-based nanosecond PLD (n-PLD). Experiments have been conducted on the growth of thin films prepared from V2O5 targets on glass substrates using f-PLD and n-PLD. Characterization using SEM, XRD and Raman spectroscopy shows that the f-PLD films have significantly rougher texture prior to annealing and exhibit with an amorphous nano-crystalline character whereas the thin films grown using n-PLD are much smoother and highly predominantly amorphous. The surface morphology, structural, vibrational, and chemical- and electronic-state elemental properties of the vanadium oxide thin films, both prior to and after annealing to 450 °C, will be discussed.
The application of logic circuit in catering industry is gradually increasing and diverse, one of the most important is to quickly and accurately control the cabinet door with each food material through logic circuit, so as to save the time of chefs to take food materials. Therefore, this paper takes 8 kinds of dishes and 10 kinds of ingredients of a sushi bar as the case and designs the logic circuit that can control the door of each sushi ingredients compartment through the truth table and the algebraic method of logic function. When inputting the serial number of each dish, the door of the compartment corresponding ingredients can be accurately opened. Meanwhile, Logisim software is used to draw the circuit diagram and verify the logic circuit design is true and effective.
Sr3SiO5:Eu2+ nanophosphors for white LEDs were synthesized by solgel method. The crystalline phases were examined with X-ray diffraction (XRD). Luminescence properties were studied, and effects of the Sr/Si ratio on the emission spectra were also studied. The nanophosphor showed a broad excitation band from 300 to 500 nm and a broad band emission peaking at 593 nm due to the typical electron transition of Eu2+ 4f74f65d1. Remarkable enhancement in luminescence characteristics was observed when excesses silica was used. This phenomenon may be attributed to the improvement of Si sensitized the luminescence of Eu2+ in the Sr3SiO5 nanophosphor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.