Background. As the skin is the largest organ of the human body, it is aging inevitably and produces cosmetic and psychological problems, and even disease. Therefore, the molecular mechanisms related to the prevention of skin aging need to be further explored. Methods. Aging models were constructed by D-galactose. Mice were administrated with polygoni multiflori radix preparat (PMRP), PMRP and 3-methyladenine, or PMRP and rapamycin intragastrically. The apparent and viscera index of aged rats was measured. Then, the physicochemical property, antioxidant ability, histological structure, mitochondrial membrane potential, ATP and ROS levels, and mitophagy of aged skins were determined. Finally, the expression of PINK1, Parkin, P62, and LC3II/I; apoptosis-related proteins; and the percentage of apoptotic cells were measured. Results. PMRP relieved skin aging with reducing of thymus index, improvement of pathological damage and histological structure, increase of the expression area of fibrous tissue, the ratio of type I to type III collagen, and antioxidant ability of aged skins. Importantly, PMRP also improved mitochondrial dysfunction with an increase in the content of mitochondrial membrane potential and ATP and a decrease of ROS levels. Moreover, mitophagy was enhanced with the treatment of PMRP when observed using electron microscopy, and the expression of PINK1, Parkin, and LC3I/II was increased with PMRP treatment but P62 expression was decreased. Meanwhile, PMRP alleviated apoptosis with a decrease of apoptotic cell and the expression of Cleaved-cas3, Bax, Cyt-c, AIF, and Smac as well as an increase of Bcl-2 expression. Conclusion. The results demonstrated that the polygoni multiflori radix preparata may delay skin aging by inducing mitophagy.
Purpose: The active melanocytes in the skin were affected by hormones and ultraviolet (UV) irradiation. Licorice zinc has a whitening effect, which may have a prominent potential in the treatment of pigmented skin disease. Methods: Modeling chloasma C57BL/6J mice by daily progesterone injection (15 mg/kg) and ultraviolet B (UVB) irradiation (λ = 312 nm, 2 h/day) for 30 days. Then, mice were given 0.65, 1.3, and 2.6 (g/kg) of licorice zinc and tranexamic acid 250 mg daily by oral administration for 14 days, respectively. Hematoxylin and eosin and Fontana-Masson staining, and Western blotting (WB) were performed to test the inhibitory of melanogenesis and activation of c-Jun-N-terminal (JNK)/p38 mitogen-activated protein kinases (MAPK) for licorice zinc. Melanogenesis was induced by α-melanocyte-stimulating hormone in vitro . Cell counting kit-8, melanin content determination, and WB were performed to verify the inhibitory effect of licorice zinc on melanogenesis. Results: The present study showed that licorice zinc decreased melanin formation, cutaneous tissue injury, and the phosphorylation of JNK and P38MAPK, which was caused by UVB irradiation in vivo . In vitro , licorice zinc showed opposite effects from JNK/p38 activator. Meanwhile, tyrosinase-related protein-1, tyrosinase, and microphthalmia-associated transcription factor were decreased too. Conclusions: Licorice zinc induced a decrease in melanin synthesis by inhibiting the JNK and the P38MAPK signaling pathway, suggesting licorice zinc is a potential agent of anti-chloasma.
Mesenchymal stem cells (MSCs) are getting attention in the field of cancer immunotherapy. The main effects of MSCs on tumors are homing and regulation of inflammatory and immune responses. Indeed, cancer immunotherapy has become a promising treatment and MSCs play a potential role in regulating the efficacy of immunotherapy. In addition, MSCs are an ideal carrier for immunomodulatory protein transmission. As such MSCs combined with immunotherapy drugs could act synergistically against tumors, throwing a great impact on cancer therapy. And MSCs may have potential in the treatment of cytokine storm or cytokine release syndrome (CRS). It is assumed that MSCs can form chimeric antigen receptor MSCs (CAR-MSCs). Whether CAR-MSCs can provide a new idea of cancer immunotherapy is unknown. It is a prime time to review the latest progress of MSCs in cancer immunotherapy, in order to clarify to fully understand the role of MSCs in cancer therapy in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.