Receptor protein tyrosine kinases (RPTKs) play important roles in the regulation of a variety of cellular processes including cell migration, proliferation, and protection from apoptosis. Here, we report the identification and characterization of a novel RPTK-like molecule that has a critical role in induction of tumorigenesis and metastasis and is termed Novel Oncogene with Kinase-domain (NOK). NOK contains a putative single transmembrane domain and a conserved intracellular tyrosine kinase domain that shares homology with members of the platelet-derived growth factor/fibroblast growth factor receptor superfamily. NOK was exclusively located in the cytoplasm. NOK mRNAs were detected in limited human organs and expressed with the highest abundance in the prostate. A variety of tumor cells also expressed the NOK mRNAs. We demonstrated that NIH3T3 and BaF3 cells could be strongly transformed by the expression of the NOK gene as examined by colony formation experiment. In addition, BaF3 cells with the stable expression of NOK induced rapid tumorigenesis in nude mice. Interestingly, these NOKexpressing tumor cells could promptly invade and spread into various distinct organs and form metastatic foci, eventually leading to the rapid death of these animals. Moreover, molecular mechanism studies indicated that NOK could concomitantly activate both MAP kinase and phosphatidylinositol 3-kinases (PI3K) pathways in stable BaF3 cells. Thus, our results both in vitro and in vivo suggest that NOK is a novel oncogene with the capacity of promoting cell transformation, tumorigenesis, and metastasis.
Receptor protein-tyrosine kinases (RPTKs) are tightly regulated during normal cellular processes including cell growth, differentiation, and metabolism. Recently, a RPTK-like molecule named novel oncogene with kinase-domain (NOK) has been cloned and characterized. Overexpression of NOK caused severe cellular transformation as well as tumorigenesis and metastasis in nude mice. In the current study, we generated two tyrosine!phenylalanine (Y!F) point mutations (Y327F and Y356F) within the endodomain of NOK that are well conserved in many RPTK subfamilies and are the potential tyrosine phosphorylation sites important for major intracellular signaling. Using BaF3 cells stably expressing the ectodomain of mouse erythropoietin receptor, and the transmembrane and endodomain of NOK (BaF3-E/N), we were able to show that point mutations at either Y327 or Y356 dramatically blocked cellular transformation by NOK as examined by colony formation and cellular DNA synthesis. In addition, tumorigenesis induced by BaF3-E/N was completely abrogated upon the introduction of either single mutation. Importantly, signaling studies revealed that the activation of extracellular signal-regulated kinase was inhibited by Y356F and was significantly reduced by Y327F. Both mutations significantly impaired Akt phosphorylation. Interestingly, both mutations did not affect the kinase activity of NOK. Moreover, apoptotic analysis revealed that both mutations accelerated cell death by activating caspase-3-mediated pathways. Thus, our study shows that these potential tyrosine phosphorylation sites may play critical roles in NOKmediated tumorigenesis both in vitro and in vivo. (Cancer Res 2005; 65(23): 10838-46)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.