Ti3SiC2 is a bioinert material. The combination of high fracture toughness, excellent corrosion resistance and easy machinability make it a new class of potential biomaterials for orthopedic applications, dental implants, and fixation devices for the bone. In this paper, effect of Si concentration on the sintering of Ti3SiC2 bulk material was reported. Ti3SiC2 bulks were fabricated by pressureless reactive sintering of powder compacts made of Ti, Si and graphite powders. Nearly pure Ti3SiC2 bulk was obtained by reactive sintering of the powder compact, with a nominal composition of 3:1.1:2 in molar ratio of Ti:Si:C, at 1500 °C for 120 minutes. TiC, a non-preferable impurity was avoided by the appropriate addition of excess Si (relative to stoichiometric composition of 3:1:2 in Ti3SiC2). However, too much Si will result in the formation of significant amount of TiSi2 and SiC in the sintered Ti3SiC2. Microstructure of the prepared Ti3SiC2 bulks was analyzed by scanning electron microscope. Phase constituent analysis was carried out by x-ray diffraction. Effect of Si content on the density of sintered samples was also studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.