We study offline reinforcement learning (RL), which aims to learn an optimal policy based on a dataset collected a priori. Due to the lack of further interactions with the environment, offline RL suffers from the insufficient coverage of the dataset, which eludes most existing theoretical analysis. In this paper, we propose a pessimistic variant of the value iteration algorithm (PEVI), which incorporates an uncertainty quantifier as the penalty function. Such a penalty function simply flips the sign of the bonus function for promoting exploration in online RL, which makes it easily implementable and compatible with general function approximators.Without assuming the sufficient coverage of the dataset, we establish a data-dependent upper bound on the suboptimality of PEVI for general Markov decision processes (MDPs). When specialized to linear MDPs, it matches the information-theoretic lower bound up to multiplicative factors of the dimension and horizon. In other words, pessimism is not only provably efficient but also minimax optimal. In particular, given the dataset, the learned policy serves as the "best effort" among all policies, as no other policies can do better. Our theoretical analysis identifies the critical role of pessimism in eliminating a notion of spurious correlation, which emerges from the "irrelevant" trajectories that are less covered by the dataset and not informative for the optimal policy.
We propose a model-free framework for sensitivity analysis of individual treatment effects (ITEs), building upon ideas from conformal inference. For any unit, our procedure reports the Γ-value, a number which quantifies the minimum strength of confounding needed to explain away the evidence for ITE. Our approach rests on the reliable predictive inference of counterfactuals and ITEs in situations where the training data are confounded. Under the marginal sensitivity model of [Z. Tan, J. Am. Stat. Assoc. 101, 1619-1637 (2006)], we characterize the shift between the distribution of the observations and that of the counterfactuals. We first develop a general method for predictive inference of test samples from a shifted distribution; we then leverage this to construct covariate-dependent prediction sets for counterfactuals. No matter the value of the shift, these prediction sets (resp. approximately) achieve marginal coverage if the propensity score is known exactly (resp. estimated). We describe a distinct procedure also attaining coverage, however, conditional on the training data. In the latter case, we prove a sharpness result showing that for certain classes of prediction problems, the prediction intervals cannot possibly be tightened. We verify the validity and performance of the methods via simulation studies and apply them to analyze real datasets.
We propose a model-free framework for sensitivity analysis of individual treatment effects (ITEs), building upon ideas from conformal inference. For any unit, our procedure reports the Γ-value, a number which quantifies the minimum strength of confounding needed to explain away the evidence for ITE.Our approach rests on the reliable predictive inference of counterfactuals and ITEs in situations where the training data is confounded. Under the marginal sensitivity model of Tan ( 2006), we characterize the shift between the distribution of the observations and that of the counterfactuals. We first develop a general method for predictive inference of test samples from a shifted distribution; we then leverage this to construct covariate-dependent prediction sets for counterfactuals. No matter the value of the shift, these prediction sets (resp. approximately) achieve marginal coverage if the propensity score is known exactly (resp. estimated). We describe a distinct procedure also attaining coverage, however, conditional on the training data. In the latter case, we prove a sharpness result showing that for certain classes of prediction problems, the prediction intervals cannot possibly be tightened. We verify the validity and performance of the new methods via simulation studies and apply them to analyze real datasets.
Pairwise constraints could enhance clustering performance in constraint-based clustering problems, especially when these pairwise constraints are informative. In this paper, a novel active learning pairwise constraint formulation algorithm would be constructed with aim to formulate informative pairwise constraints efficiently and economically. This algorithm consists of three phases: Selecting, Exploring and Consolidating. In Selecting phase, some type of unsupervised clustering algorithm is used to obtain an informative data set in terms of Shannon entropy. In Exploring phase, some type of farthest-first strategy is used to construct a series of query with aim to construct clustering skeleton set structure and informative pairwise constraints are also collected meanwhile based on the informative data set. If the number of skeleton sets equals the number of clusters, the new algorithm gets into third phase Consolidating; otherwise, it would finish. In Consolidating phase, non-skeleton points included in the informative data set are used to construct a series of query with skeleton set representative points constructed in Exploring phase. And some type of priority principle is proposed to help collect more must-link pairwise constraints. Treat the well-known MPCK-means (metric pairwise constrained K-means) as the underlying constraint-based semi-supervised clustering algorithm and data experiment comparison between this new algorithm and its counterparts would be done. Experiment outcome shows that significant improvement of this new algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.