Floral scents emitted from eight cultivars of cut lily flowers (Lilium) were analyzed. Floral volatiles were collected by headspace adsorption on sorbent tubes and analyzed by gas chromatography–mass spectrometry (GC/MS) using a direct thermal desorption. Fifty volatile compounds were identified. Nine compounds were detected in all lilies, whereas 20 compounds were detected in all scented lilies. The results revealed that non-scented lilies emitted trace amounts of volatile compounds, whereas scented lilies emitted high levels of volatile compounds. Monoterpenoids and benzenoids were the dominant compound classes of volatiles emitted from scented lilies. Myrcene, (E)-β-ocimene, linalool, methyl benzoate, and ethyl benzoate were the major compounds of the aroma of scented lilies; 1,8-cineole was also a major compound in the two scented oriental × trumpet hybrid lilies. Scent emissions occurred in a circadian rhythm with higher levels of volatiles emitted during the night. Lilium ‘Siberia’ was selected as a model to investigate the source of the emissions. GC/MS analysis of four flower parts and neutral red staining revealed that tepals were the source of floral scent.
Lilium cultivars have a wide range of variation in floral scent phenotypes. Using gas chromatography–mass spectrometry (GC/MS) analyses of volatile emissions during the night, the floral scent compositions of 35 lily cultivars from seven different hybrid groups were studied. The results showed that there was a positive correlation between volatile emission levels and scent intensities. Nonscented lily cultivars belonging to Asiatic hybrids hardly emitted volatiles, light-scented Longiflorum × Asiatic hybrids emitted low levels of volatiles, and scented lily cultivars (belonging to Oriental, Trumpet, Longiflorum, Longiflorum × Oriental, and Oriental × Trumpet hybrids) emitted significantly high levels of volatiles. In general, the scent compositions of lily cultivars were similar within the same hybrid group, and the differences among hybrid groups reflect their pedigree. Monoterpenoids and benzenoids dominated the floral scents of most volatile-emitting lily cultivars, whereas monoterpenoids alone dominated the floral scents of some volatile-emitting lilies. Although various scent compounds were released from volatile-emitting lily cultivars, the dominant scent compounds were focused on three monoterpenoids [1.8-cineole, linalool, and (E)-β-ocimene] and one benzenoid (methyl benzoate). The scent traits of lily cultivars could be traced back to their parents.
The bulbs of several Lilium species are considered to be both functional foods and traditional medicine in northern and eastern Asia. Considering the limited information regarding the specific bioactive compounds contributing to the functional properties of these bulbs, we compared the secondary metabolites of ten Lilium bulb samples belonging to five different species, using an ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS)-based secondary metabolomics approach. In total, 245 secondary metabolites were detected; further, more metabolites were detected from purple Lilium bulbs (217 compounds) than from white bulbs (123–171 compounds). Similar metabolite profiles were detected in samples within the same species irrespective of where they were collected. By combining herbal analysis and screening differential metabolites, steroid saponins were considered the key bioactive compounds in medicinal lilies. Of the 14 saponins detected, none were accumulated in the bulbs of L. davidii var. willmottiae, also called sweet lily. The purple bulbs of L. regale accumulated more secondary metabolites, and, notably, more phenolic acid compounds and flavonoids. Overall, this study elucidates the differential metabolites in lily bulbs with varying functions and colors and provides a reference for further research on functional foods and the medicinal efficacy of Lilium species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.