The precise control of the shape, size and microstructure of nanomaterials is of high interest in chemistry and material sciences. However, living lateral growth of cylinders is still very challenging. Herein, we propose a crystallization-driven fusion-induced particle assembly (CD-FIPA) strategy to prepare cylinders with growing diameters by the controlled fusion of spherical micelles self-assembled from an amphiphilic homopolymer. The spherical micelles are heated upon glass transition temperature (Tg) to break the metastable state to induce the aggregation and fusion of the amorphous micelles to form crystalline cylinders. With the addition of extra spherical micelles, these micelles can attach onto and fuse with the cylinders, showing the living character of the lateral growth of cylinders. Computer simulations and mathematical calculations are preformed to reveal the total energy changes of the nanostructures during the self-assembly and CD-FIPA process. Overall, we demonstrated a CD-FIPA concept for preparing cylinders with growing diameters.
The stimuli‐responsive transition of nanostructures from amorphous to crystalline state is of high interest in polymer science, but is still challenging. Herein, the transformation of amorphous nanobowls to crystalline ellipsoids triggered by UV induced trans‐cis isomerization is demonstrated, using an azobenzene‐containing amphiphilic homopolymer (PAzoAA) as a building block. The amide bond and azobenzene pendants are introduced to the side chain of PAzoAA to afford hydrogen bonding and π–π interactions, which promote the formation of nanobowls rather than spherical nanostructures. Upon exposure to UV irradiation, trans‐cis isomerization of azobenzene pendants occurs, leading to the increase of hydrophilicity and destruction of π–π interaction, further resulting in the disassembly of the nanobowls. Then the PAzoAA re‐assembles to form crystalline ellipsoids instead of amorphous nanostructures when recovered at 70 °C without UV light. Further, it is confirmed that the high incubation temperature after UV irradiation is critical for the cis‐trans transformation and the high mobility of the polymer chains to facilitate the regular rearrangement of azobenzene pendants. Overall, a facile method to achieve the transformation of amorphous nanobowls to crystalline ellipsoids is proposed, which may bring new insight into preparation of crystalline nanoparticles using amorphous precursors.
The control over the morphology and nanostructure of soft nanomaterials self-assembled from amphiphilic polymers is of high interest, but is still challenging. Herein, we manipulate the morphology of bowl-shaped nanoparticles...
The facile preparation of non-noble metal nanoparticle loaded carbon nanomaterials is promising for efficient oxygen reduction reaction (ORR) electrocatalysis. Herein, a facile preparation strategy is proposed to prepare nitrogen-doped carbon sponge loaded with fine cobalt nanoparticles by the direct pyrolysis of the cobalt ions adsorbed polymeric precursor. The polymeric sponge precursor with continuous framework and high porosity is formed by the self-assembly of a poly(amic acid). Taking advantage of the negatively charged surface and porous structure, cobalt ions can be efficiently adsorbed into the polymeric sponge. After pyrolysis, fine cobalt nanoparticles covered by carbon layers are formed, while the sponge-like structure of the precursor is also well-preserved in order to give cobalt nanoparticles loaded nitrogen-doped carbon sponges (Co/CoO@NCS) with a high loading content of 44%. The Co/CoO@NCS exhibits promising catalytic activity toward ORR with a half-wave potential of 0.830 V and a limiting current density of 4.71 mA cm−2. Overall, we propose a facile polymer self-assembly strategy to encapsulate transition metal nanoparticles with high loading content on a nitrogen-doped carbon sponge for efficient ORR catalysis.
Lead (II) (Pb(II)) is widespread in water and very harmful to creatures, and the efficient removal of it is still challenging. Therefore, we prepared a novel sponge-like polymer-based absorbent (poly(amic acid), PAA sponge) with a highly porous structure using a straightforward polymer self-assembly strategy for the efficient removal of Pb(II). In this study, the effects of the pH, dosage, adsorption time and concentration of Pb(II) on the adsorption behavior of the PAA sponge are investigated, revealing a rapid adsorption process with a removal efficiency up to 89.0% in 2 min. Based on the adsorption thermodynamics, the adsorption capacity increases with the concentration of Pb(II), reaching a maximum adsorption capacity of 609.7 mg g−1 according to the Langmuir simulation fitting. Furthermore, the PAA sponge can be efficiently recycled and the removal efficiency of Pb(II) is still as high as 93% after five adsorption–desorption cycles. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses reveal that the efficient adsorption of Pb(II) by the PAA sponge is mainly due to the strong interaction between nitrogen-containing functional groups and Pb(II), and the coordination of oxygen atoms is also involved. Overall, we propose a polymer self-assembly strategy to easily prepare a PAA sponge for the efficient removal of Pb(II) from water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.