We use both electromagnetic topology (EMT) and the Baum-Liu-Tesche (BLT) equation to analyze a cavity model with an aperture. More precisely, we combine the aperture coupling theory and EMT to study the issues of the electromagnetic field penetration through apertures into a cavity and the coupling to a two-wire transmission line in it. We employ the equivalence principle to establish the equivalent source on the aperture. Then, we obtain the semi analytic solutions of the load response of the two-wire line in the cavity based on the Baum-Liu-Tesche (BLT) equation. In addition, based on the Agrawal model, we give the coupling current distribution at two loads for a two-wire line in the cavity. Finally, we present some numerical results to demonstrate the semi-analytic approach of this paper. In fact, these numerical results on the electric field shielding (EFS) of a rectangular cavity with an aperture agree well with the experimental results in the literature. Furthermore, for a two-wire line in the cavity with an aperture the induced current peaks at loads are observed in the frequency range, some of which are associated with the resonance of the aperture, and others correspond to the resonant frequencies of the cavity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.