Cyclodextrins (CDs), which are a class of cyclic oligosaccharides extracted from the enzymatic degradation of starch, are often utilized in molecular recognition and assembly constructs, primarily via host–guest interactions in water. In this review, recent progress in CD‐based supramolecular nanoassemblies that are sensitive to chemical, biological, and physical stimuli is updated and reviewed, and intriguing examples of the biological functions of these nanoassemblies are presented, including pH‐ and redox‐responsive drug and gene delivery, enzyme‐activated specific cargo release, photoswitchable morphological interconversion, microtubular aggregation, and cell–cell communication, as well as a geomagnetism‐controlled nanosystem for the suppression of tumor invasion and metastasis. Moreover, future perspectives and challenges in the fabrication of intelligent CD‐based biofunctional materials are also discussed at the end of this review, which is expected to promote the translational development of these nanomaterials in the biomedical field.
The hydrophobic internal cavity and hydrophilic external surface of cyclodextrins (CDs) render promising electrochemical applications. Here, we report a comparative and mechanistic study on the use of CD molecules (α-, β-, and γ-CD) as electrolyte additives for rechargeable Zn batteries. The addition of α-CD in aqueous ZnSO 4 solution reduces nucleation overpotential and activation energy of Zn plating and suppresses H 2 generation. Computational, spectroscopic, and electrochemical studies reveal that α-CD preferentially adsorbs in parallel on the Zn surface via secondary hydroxyl groups, suppressing water-induced side reactions of hydrogen evolution and hydroxide sulfate formation. Additionally, the hydrophilic exterior surface of α-CD with intense electron density simultaneously facilitates Zn 2+ deposition and alleviates Zn dendrite formation. A formulated 3 M ZnSO 4 + 10 mM α-CD electrolyte enables homogenous Zn plating/stripping (average Coulombic efficiency ∼ 99.90%) at 1 mA cm −2 in Zn|Cu cells and a considerable capacity retention of 84.20% after 800 cycles in Zn|V 2 O 5 full batteries. This study provides insight into the use of supramolecular macrocycles to modulate and enhance the interface stability and kinetics of metallic anodes for aqueous battery chemistry.
The construction of host–guest-binding-induced phosphorescent supramolecular assemblies has become one of increasingly significant topics in biomaterial research. Herein, we demonstrate that the cucurbit[8]uril host can induce the anthracene-conjugated bromophenylpyridinium guest to form a linear supramolecular assembly, thus facilitating the enhancement of red fluorescence emission by the host-stabilized charge-transfer interactions. When the anthryl group is photo-oxidized to anthraquinone, the obtained linear nanoconstructs can be readily converted into the homoternary inclusion complex, accompanied by the emergence of strong green phosphorescence in aqueous solution. More intriguingly, dual organelle-targeted imaging abilities have been also distinctively achieved in nuclei and lysosomes after undergoing photochemical reaction upon UV irradiation. This photooxidation-driven purely organic room-temperature phosphorescence provides a convenient and feasible strategy for supramolecular organelle identification to track specific biospecies and physiological events in the living cells.
Rationale: Phagocytosis of silicon dioxide (SiO2) into lung cells causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Circular RNAs (circRNAs) are a subclass of non-coding RNAs detected within mammalian cells; however, researchers have not determined whether circRNAs are involved in the pathophysiological process of silicosis. The upstream molecular mechanisms and functional effects on cell apoptosis, proliferation and migration were investigated to elucidate the role of circRNAs in SiO2-induced inflammation in pulmonary macrophages.Methods: Primary cultures of alveolar macrophages from healthy donors and patients as well as the RAW264.7 macrophage cell line were used to explore the functions of circHECTD1 (HECT domain E3 ubiquitin protein ligase 1) in macrophage activation.Results: The results of the experiments indicated that 1) SiO2 concomitantly decreased circHECTD1 levels and increased HECTD1 protein expression; 2) circHECTD1 and HECTD1 were involved in SiO2-induced macrophage activation via ubiquitination; and 3) SiO2-activated macrophages promoted fibroblast proliferation and migration via the circHECTD1/HECTD1 pathway. Tissue samples from silicosis patients confirmed the upregulation of HECTD1.Conclusions: Our study elucidated a link between SiO2-induced macrophage activation and the circHECTD1/HECTD1 pathway, thereby providing new insight into the potential use of HECTD1 in the development of novel therapeutic strategies for treating silicosis.
Tunable protein assemblies not only hold adominant position in vital biological events but are also as ignificant theme in supramolecular chemistry.H erein, we demonstrated that the intertubular aggregation of microtubules (MTs) could be efficiently regulated by as ynergistic polypeptide-tubulin interaction and host-guest complexation. The benzylimidazolium-modified antimitotic peptide (BP) could recognizet he MTs and concurrently form stable inclusion complexes with avirulent cucurbit[7]uril (CB[7]) and cucurbit[8]uril (CB[8]) in different binding stoichiometries.T he self-assembling morphology of MTs was converted from fibrous to nanoparticulate aggregates via extensive BP&CB[8] cross-linkage,l eading to significant cell apoptosis and tumor ablation in vivo.T he targeted (BP&CB[8])@MT ternary assembly provides afacile supramolecular method to enhance the protein-protein interactions,which may be developed as atherapyfor degenerative diseases,such as cancer.Supportinginformation and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.