African swine fever virus (ASFV), the etiological agent of African swine fever (ASF), a hemorrhagic fever of domestic pigs, has devastating consequences for the pig farming industry. More than 1,000,000 pigs have been slaughtered since 3 August 2018 in China. However, vaccines or drugs for ASF have yet to be developed. As such, a rapid test that can accurately detect ASFV on-site is important to the timely implementation of control measures. In this study, we developed a rapid test that combines recombinase polymerase amplification (RPA) of the ASFV p72 gene with lateral flow detection (LFD). Results showed that the sensitivity of recombinase polymerase amplification with lateral flow dipstick (RPA-LFD) for ASFV was 150 copies per reaction within 10 min at 38°C. The assay was highly specific to ASFV and had no cross-reactions with other porcine viruses, including classical swine fever virus (CSFV). A total of 145 field samples were examined using our method, and the agreement of the positive rate between RPA-LFD (10/145) and real-time PCR (10/145) was 100%. Overall, RPA-LFD provides a novel alternative for the simple, sensitive, and specific identification of ASFV and showed potential for on-site ASFV detection.
The brown planthopper (Nilaparvata lugens, BPH) is the most serious rice plant pests in Asia. In this study, we performed transcriptome-wide analysis on BPH intestine. We obtained more than 26 million sequencing reads that were then assembled into 53,553 unigenes with a mean size of 388 bp. Based on similarity search with the nucleotide sequences available at NCBI, BPH intestine-specific transcriptome analysis identified 21,405 sequences. Assembled sequences were annotated with gene description, gene ontology and clusters of orthologous group terms. The digestion-, defense- and xenobiotic metabolism-related genes were abundantly detected in the transcripts from BPH intestine. Many novel genes including 33 digestion-related genes, 25 immune responsive genes and 27 detoxification-related genes are first reported here. We investigated the gene expression patterns at the transcript levels in different tissues by quantitative real-time PCR analysis, which revealed that some genes had intestine-specific expression, implicating their potential significance for BPH management.
We use a non-swelling hydrogel to construct microfluidic chips and show that they could potentially be applicable for cell/tissue-related applications, performing much better than conventional PDMS or existing hydrogel based microfluidic chips.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.