In this paper, the sensitization on electrochemiluminescent (ECL) reaction of luminol from reactive oxygen species (ROSs) in neutral medium was studied. The powerful sensitization from ROSs even related with organics and organisms were examined under selected conditions which were suitable for biochemical analysis. The results indicated that whether the enhancers were dissolved in solutions or immobilized on the surface of conventional electrodes, stronger ECL intensity of luminol could be obtained. Enhanced ECL helped to provide groundwork for the detection of biomolecules for which would further enhance or quench the ECL signals. The technique may provide new means in a variety of fields such as clinical diagnostics, immunological analysis and environmental monitoring due to its simplicity and high efficiency.
Physical gelation behaviors of a series of novel bisurea-based derivatives bearing fatty alkyl tertiary amine moieties have been explored in water and common organic solvents. One of these amines exhibits very good thixotropic gels in apolar aromatic solvents (e.g., xylenes). The corresponding sol-gel transition is instantaneous and could be repeated for at least 50 cycles. Interestingly, the elasticity and strength of the resulting gels can be remarkably enhanced initially by the addition of a trace amount of tetrabutylammonium acetate (TBA) followed by a subsequent drop with further salt addition. Temperature-dependent H NMR confirmed that hydrogen bonding is the main driving force for the physical gelation. TEM, rheology,H NMR titration, and examination of critical gelation concentration (CGC) reveal that the phenomenon is due to the dominated effects, the salting out effect at lower TBA concentration, or the anion-urea hydrogen bonding at higher TBA concentration. Furthermore, the obtained transparent gels in this work can be used as good media for growing crystals of several organic semiconductors.
Although it is widely used in industry and food products, formic acid can be dangerous owing to its corrosive properties. Accurate determination of formic acid would not only benefit its qualified uses but also be an effective way to avoid corrosion or injury from inhalation, swallowing, or touching. Herein, we present a nanofilm-based fluorescent sensor for formic acid vapor detection with a wide response range, fast response speed, and high sensitivity and selectivity. The nanofilm was synthesized at a humid air/dimethyl sulfoxide (DMSO) interface through dynamic covalent condensation between two typically designed building blocks, de-tert-butyl calix[4]arene-tetrahydrazide (CATH) and 4,4′,4″,4‴-(ethene-1,1,2,2-tetrayl)tetra-benzaldehyde (ETBA). The as-prepared nanofilm is uniform, flexible, fluorescent, and photochemically stable. The thickness and fluorescence intensity of the nanofilm can be facilely adjusted by varying the concentration of the building blocks and the sensing performance of the nanofilm can be optimized accordingly. Based on the nanofilm, a fluorescent sensor with a wide response range (4.4 ppt−4400 ppm) for real-time and online detection of formic acid vapor was built. With the sensor, a trace amount (0.01%) of formic acid in petroleum ether (60−90 °C) can be detected within 3 s. Besides, fluorescence quenching of the nanofilm by formic acid vapor can be visualized. It is believed that the sensor based on the nanofilm would find real-life applications in corrosion and injury prevention from formic acid.
A calix [4]arene-based dimeric-cholesteryl derivative with naphthalene in the linkers (C2N2C) was designed and synthesized. The gelation behaviors of the compound in 36 liquids were evaluated. It was demonstrated that C2N2C could gel 16 of the liquids tested, which include both polar and apolar liquids. SEM and AFM studies revealed that the morphologies of the gel networks are dependent on the concentrations of C2N2C and the nature of the liquids under study. Importantly, rheological studies manifested that the gel of the compound in benzene possesses sensitive, fast and fully reversible thixotropic property. More importantly, the T gel of the C2N2C/benzene gel could be at least more than 60 degrees higher than the boiling point of benzene when the gelator concentration is greater than 6% (w/v), a result never reported before. CD measurements revealed the chiral nature of the assemblies of the gel networks. Further investigation by AFM measurements confirmed the right-hand helical structures of the gel networks of C2N2C/benzene gel. As anticipated, hydrogen bonding and π-π stacking are two main driving forces for the formation of the gels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.