In this study, the influence of some factors on the heterogeneous nucleation of hen egg-white lysozyme (E.C. 3.2.1.17) on a series of chemically modified surfaces has been investigated. Microbatch crystallization experiments were conducted on the microscope glass slides that were treated with poly-L-glutamic acid (PLG), poly(2-hydroxyethyl methacrylate) (P2HEMA), poly(methyl methacrylate) (PMMA), poly(4-vinyl pyridine) (P4VP), and (3-aminopropyl)triethoxysilane (APTES). An optical microscope with a heating/cooling stage was employed to measure the induction time of heterogeneous nucleation. The surface topography and roughness were characterized by atomic force microscopy. Contact angles for crystallization solution on the investigated surfaces were measured by a contact angle meter. From the theoretical analysis, the energetic barrier to heterogeneous nucleation was found to increase at higher contact angles and to decrease at higher roughness. Experimentally, a qualitative increase of the induction time of the heterogeneous nucleation on P2HEMA, APTES, and PMMA surfaces with the contact angle was observed. Such surfaces as P2HEMA, PLG, and APTES, which were of higher roughness, were shown to promote the heterogeneous nucleation. In addition, the surface with specific topography is expected to increase the possibility of the formation of a critical nucleus. Finally, the P4VP surface appeared to suppress the heterogeneous nucleation as a result of the electrostatic interaction between the lysozyme and P4VP molecules.
Reductive amination of furfuryl alcohol, furfural and 5‐hydroxymethylfurfural (5‐HMF) were carried out on various metal catalysts. Over Raney Ni catalyst, we obtained the highest furfurylamine yields of 81.8 % and 94.0 % from furfuryl alcohol in absence and presence of H2, respectively. While furfural was used as the substrate, 100 % yield of furfurylamine could be achieved over Raney Ni under rather moderate conditions. Although 5‐HMF was completely converted over all catalysts used, the highest yield of 2,5‐bisaminomethylfuran (60.7 %) was obtained over Raney Ni at 160 °C in 12 h. The DFT calculations on the adsorption behavior of NH3 and H2 on different metal surfaces showed that the difference of the adsorption energy between NH3 and H2 on Ni is lower than those of other metals, indicating that less metal active sites on Ni surface is occupied by NH3, which leaves more active sites for dehydrogenation/hydrogenation reactions and in the end promotes the reductive amination reactions.
Densities, viscosities, and surface tension have been measured as a function of composition for the binary liquid mixture of diethylene glycol diethyl ether + water at 293.15 K under atmospheric pressure. Densities were determined using a capillary pycnometer. Viscosities were measured with a Ubbelohde capillary viscometer. Surface tension was measured by means of the drop-volume technique. The estimated uncertainties of the measurements were (0.1% for density, (0.3% for viscosity, and (0.04 mN‚m -1 for surface tension. Liquid-liquid equilibrium data were also measured for the binary mixture in the temperature range from 301.15 K to 363.15 K. The compositions of both the top and bottom phases were analyzed by gas chromatography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.