Background
: Walking while performing cognitive and motor tasks simultaneously interferes with gait performance and may lead to falls in older adults with mild cognitive impairment (MCI). Executive function, which seems to play a key role in dual-task gait performance, can be improved by combined physical and cognitive training. Virtual reality (VR) has the potential to assist rehabilitation, and its effect on physical and cognitive function requires further investigation. The purpose of this study was to assess the effects of VR-based physical and cognitive training on executive function and dual-task gait performance in older adults with MCI, as well as to compare VR-based physical and cognitive training with traditional combined physical and cognitive training.
Method
: Thirty-four community-dwelling older adults with MCI were randomly assigned into either a VR-based physical and cognitive training (VR) group or a combined traditional physical and cognitive training (CPC) group for 36 sessions over 12 weeks. Outcome measures included executive function [Stroop Color and Word Test (SCWT) and trail making test (TMT) A and B], gait performance (gait speed, stride length, and cadence) and dual-task costs (DTCs). Walking tasks were performed during single-task walking, walking while performing serial subtraction (cognitive dual task), and walking while carrying a tray (motor dual task). The GAIT Up system was used to evaluate gait parameters including speed, stride length, cadence and DTCs. DTC were defined as 100 * (single-task gait parameters − dual-task gait parameters)/single-task gait parameters.
Results
: Both groups showed significant improvements in the SCWT and single-task and motor dual-task gait performance measures. However, only the VR group showed improvements in cognitive dual-task gait performance and the DTC of cadence. Moreover, the VR group showed more improvements than the CPC group in the TMT-B and DTC of cadence with borderline significances.
Conclusion
: A 12-week VR-based physical and cognitive training program led to significant improvements in dual-task gait performance in older adults with MCI, which may be attributed to improvements in executive function.
BackgroundDeclined cognitive function interferes with dual-task walking ability and may result in falls in older adults with mild cognitive impairment (MCI). The mind-body exercise, Tai Chi (TC), improves cognition and dual-task ability. Exergaming is low-cost, safe, highly scalable, and feasible. Whether the effects of exergaming-based TC is beneficial than traditional TC has not been investigated yet.ObjectivesThe objective of this study was to investigate effects of exergaming-based TC on cognitive function and dual-task walking among older adults with MCI.MethodsFifty patients with MCI were randomly assigned to an exergaming-based TC (EXER-TC) group, a traditional TC (TC) group, or a control group. The EXER-TC and TC groups received 36 training sessions (three, 50-min sessions per week) during a 12-week period. The control group received no intervention and were instructed to maintain their usual daily physical activities. The outcome variables measured included those related to cognitive function, dual-task cost (DTC), and gait performance.ResultsThe EXER-TC and TC groups performed better than the control group on the Chinese version of the Stroop Color and Word Test, the Trail Making Test Parts A and B, the one-back test, gait speed, and DTC of gait speed in cognitive dual-task conditions after training. However, there were no significant differences between the EXER-TC and TC groups. Compared with the control group, only the EXER-TC group experienced beneficial effects for the Montreal Cognitive Assessment.ConclusionEXER-TC was comparable to traditional TC for enhancement of dual-task gait performance and executive function. These results suggested that the EXER-TC approach has potential therapeutic use in older adults with MCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.