Background/Aims: Cisplatin-based treatment is first-line chemotherapy for several cancers including ovarian cancer. The development of cisplatin resistance results in treatment failure, but the underlying mechanisms are not fully understood. Histone deacetylases (HDACs) are a large family of enzymes that deacetylate lysine residues on histones and non-histone proteins. High expression of HDAC1 is associated with poor outcomes in ovarian cancer. Furthermore, resistance to chemotherapeutic agents is associated with HDAC1 overexpression in ovarian cancer cells. The goals of this study were to determine whether targeting HDAC1 can sensitize ovarian cancer cells to cisplatin and to explore the underlying mechanisms. Methods: Small interfering RNA (siRNA)-targeting HDAC1 was designed to silence HDAC1 in the cisplatin-resistant ovarian cancer cell line A2780CDDP and its cisplatin-sensitive cell line A2780. The effects of targeting HDAC1 on cell viability assay, colony formation, and apoptosis were detected. c-Myc re-expression or miR-34a inhibitors were used to examine the relationship among HDAC1, c-Myc, and miR-34a expression, which was assessed by western blot analysis and quantitative reverse transcription PCR. We established stable transfectants of A2780CDDP/HDAC1 short hairpin RNA (shRNA) and A2780/HDAC1 shRNA. The therapeutic effectiveness of cisplatin in murine xenograft models was assessed following shRNA-mediated HDAC1 silencing in A2780CDDP and A2780 cells. The mechanism of cell death was studied in tumor sections obtained from different mouse tumors. Results: In cisplatin-resistant A2780CDDP cells, HDAC1 knockdown by siRNA suppressed cell proliferation, and increased apoptosis and chemosensitivity by downregulating c-Myc and upregulating miR-34a. In cisplatin-sensitive A2780 cells, HDAC1 knockdown did not affect cell proliferation and apoptosis. Cisplatin treatment activated HDAC1 and c-Myc and inactivated miR-34a. Inhibition of HDAC1 with siRNA reduced c-Myc expression, increased miR-34a expression, and sensitized A2780 cells to cisplatin-induced apoptosis. c-Myc re-expression or miR-34a targeting by miR-34a inhibitors protected cells from apoptosis or reversed cisplatin resistance following HDAC1 knockdown or/and cisplatin exposure. Finally, in vivo studies showed that targeting HDAC1 inhibited A2780CDDP-induced xenograft tumor growth but not A2780-induced xenograft tumor growth. Targeting HDAC1 sensitized both A2780- and A2780CDDP-induced xenograft tumors to cisplatin treatment. Conclusions: Upregulation of HDAC1 is a crucial event in the development of drug resistance to current treatments in ovarian cancer. Thus, targeting HDAC1 by enhancing c-Myc-dependent miR-34a expression might be an effective strategy for increasing the efficacy of cisplatin treatment.
Long non-coding RNA H19 (H19) is highly expressed in cancers and is considered to highly correlate with the extent of malignant degree. The present study was performed to determine the expression levels of H19 in anaplastic thyroid carcinoma (ATC) tissues and the role of H19 in ATC 8505C cells in vitro and in vivo. Expression of H19 was detected in 19 ATC and 19 normal thyroid tissues by real-time quantitative polymerase chain reaction. Utilizing the siRNA or short hairpin RNA (shRNA) directed against human H19 (H19 siRNA or shRNA H19) depleted H19 in ATC 8505C cells and characterized the outcomes. The results showed that H19 was overexpressed in ATC tissues. Targeting H19 inhibited proliferation, migration, and invasion and induced apoptosis in 8505C cells in vitro and inhibited tumorigenesis and metastasis in vivo. Therefore, the H19 might be an effective target for ATC molecular therapy.
MicroRNAs (miRNAs) are small non-coding RNAs that participate in several cellular functions and tumour progression. A previous microarray study demonstrated that miR-135b is downregulated in prostate cancer (PCa) cells, but the role and molecular mechanism of miR-135b in the regulation of tumour metastasis remain to be elucidated. In the present study, significant downregulation of miR-135b in PCa tissues, compared with noncancerous tissues, was detected by reverse transcription-quantitative polymerase chain reaction. Furthermore, the expression of miR-135b was demonstrated to be associated with the pathological stage and the levels of total and free prostate-specific antigen (PSA) in PCa cells. In addition, signal transducer and activator of transcription 6 (STAT6) was identified as a target of miR-135b in PCa cells by luciferase activity and western blot assays. The upregulation of miR-135b in PCa cells led to reduced expression of STAT6 in the cytoplasm and nucleus of these cells, while the overexpression of miR-135b and knockdown of STAT6 were able to inhibit the migration and invasion abilities of PCa cells in vitro. Therefore, the results of the present study indicate that miR-135b suppresses tumour metastasis by targeting STAT6.
Regulation of cellular actin dynamics is pivotal in driving cell motility. During cancer development, cells migrate to invade and spread; therefore, dysregulation of actin regulators is often associated with cancer progression. Here we report the role of ABRACL, a human homolog of the Dictyostelium actin regulator Costars, in migration and tumorigenic growth of cancer cells. We found a correlation between ABRACL expression and the migratory ability of cancer cells. Cell staining revealed the colocalization of ABRACL and F-actin signals at the leading edge of migrating cells. Analysis of the relative F-/G-actin contents in cells lacking or overexpressing ABRACL suggested that ABRACL promotes cellular actin distribution to the polymerized fraction. Physical interaction between ABRACL and cofilin was supported by immunofluorescence staining and proximity ligation. Additionally, ABRACL hindered cofilin-simulated pyrene F-actin fluorescence decay in vitro, indicating a functional interplay. Lastly, analysis on a colorectal cancer cohort demonstrated that high ABRACL expression was associated with distant metastasis, and further exploration showed that depletion of ABRACL expression in colon cancer cells resulted in reduced cell proliferation and tumorigenic growth. Together, results suggest that ABRACL modulates actin dynamics through its interaction with cofilin and thereby regulates cancer cell migration and participates in cancer pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.