Aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) are the most common aflatoxins produced by Aspergillus flavus in peanuts, with high carcinogenicity and teratogenicity. Identification of DNA markers associated with resistance to aflatoxin production is likely to offer breeders efficient tools to develop resistant cultivars through molecular breeding. In this study, seeds of 99 accessions of a Chinese peanut mini-mini core collection were investigated for their reaction to aflatoxin production by a laboratory kernel inoculation assay. Two resistant accessions (Zh.h0551 and Zh.h2150) were identified, with their aflatoxin content being 8.11%–18.90% of the susceptible control. The 99 peanut accessions were also genotyped by restriction site-associated DNA sequencing (RAD-Seq) for a genome-wide association study (GWAS). A total of 60 SNP (single nucleotide polymorphism) markers associated with aflatoxin production were detected, and they explained 16.87%–31.70% of phenotypic variation (PVE), with SNP02686 and SNP19994 possessing 31.70% and 28.91% PVE, respectively. Aflatoxin contents of accessions with “AG” (existed in Zh.h0551 and Zh.h2150) and “GG” genotypes of either SNP19994 or SNP02686 were significantly lower than that of “AA” genotypes in the mean value of a three-year assay. The resistant accessions and molecular markers identified in this study are likely to be helpful for deployment in aflatoxin resistance breeding in peanuts.
A wild rice QTL qGL12.2 for grain length was fine mapped to an 82-kb interval in chromosome 12 containing six candidate genes and none was reported previously. Grain length is an important trait for yield and commercial value in rice. Wild rice seeds have a very slender shape and have many desirable genes that have been lost in cultivated rice during domestication. In this study, we identified a quantitative trait locus, qGL12.2, which controls grain length in wild rice. First, a wild rice chromosome segment substitution line, CSSL41, was selected that has longer glume and grains than does the Oryza sativa indica cultivar, 9311. Next, an F population was constructed from a cross between CSSL41 and 9311. Using the next-generation sequencing combined with bulked-segregant analysis and F recombinants analysis, qGL12.2 was finally fine mapped to an 82-kb interval in chromosome 12. Six candidate genes were found, and no reported grain length genes were found in this interval. Using scanning electron microscopy, we found that CSSL41 cells are significantly longer than those of 9311, but there is no difference in cell widths. These data suggest that qGL12.2 is a novel gene that controls grain cell length in wild rice. Our study provides a new genetic resource for rice breeding and a starting point for functional characterization of the wild rice GL gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.