Plant pattern recognition receptors (PRRs) perceive pathogen‐associated molecular patterns (PAMPs) to activate immune responses. Medium‐chain 3‐hydroxy fatty acids (mc‐3‐OH‐FAs), which are widely present in Gram‐negative bacteria, were recently shown to be novel PAMPs in Arabidopsis thaliana. The Arabidopsis PRR LIPOOLIGOSACCHARIDE‐SPECIFIC REDUCED ELICITATION (LORE) is a G‐type lectin receptor‐like kinase that recognizes mc‐3‐OH‐FAs and subsequently mounts an immune response; however, the mechanisms underlying LORE activation and downstream signaling are unexplored. Here, we report that one of the mc‐3‐OH‐FAs, 3‐OH‐C10:0, induces phosphorylation of LORE at tyrosine residue 600 (Y600). Phosphorylated LORE subsequently trans‐phosphorylates the receptor‐like cytoplasmic kinase PBL34 and its close paralogs, PBL35 and PBL36, and therefore activates plant immunity. Phosphorylation of LORE Y600 is required for downstream phosphorylation of PBL34, PBL35, and PBL36. However, the Pseudomonas syringae effector HopAO1 targets LORE, dephosphorylating the tyrosine‐phosphorylated Y600 and therefore suppressing the immune response. These observations uncover the mechanism by which LORE mediates signaling in response to 3‐OH‐C10:0 in Arabidopsis.
During pathogenic infection, hundreds of proteins that play vital roles in the Verticillium dahliae-host interaction are secreted. In this study, an integrated proteomic analysis of secreted V. dahliae proteins was performed, and a conserved secretory protein, designated VdCP1, was identified as a member of the SnodProt1 phytotoxin family. An expression analysis of the vdcp1 gene revealed that the transcript is present in every condition studied and displays elevated expression throughout the infection process. To investigate the natural role of VdCP1 in V. dahliae, two vdcp1 knockout mutants and their complementation strains were generated. Bioassays of these mutants revealed no obvious phenotypic differences from the wild-type (WT) in terms of mycelial growth, conidial production or mycelial/spore morphology. However, compared with the WT, the vdcp1 knockout mutants displayed attenuated pathogenicity in cotton plants. Furthermore, treating plants with purified recombinant VdCP1 protein expressed in Pichia pastoris induced the accumulation of reactive oxygen species (ROS), expression of several defense-related genes, leakage of ion electrolytes, enhancement of defense-related enzyme activity and production of salicylic acid. Moreover, VdCP1 conferred resistance to Botrytis cinerea and Pseudomonas syringae pv. tabaci in tobacco and to V. dahliae in cotton. Further research revealed that VdCP1 possesses chitin-binding properties and that the growth of vdcp1 knockout mutants was more affected by treatments with chitinase, indicating that VdCP1 could protect V. dahliae cell wall from enzymatic degradation, which suggests an effector role of VdCP1 in infecting hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.