The genus Blumea is one of the most economically important genera of Inuleae (Asteraceae) in China. It is particularly diverse in South China, where 30 species are found, more than half of which are used as herbal medicines or in the chemical industry. However, little is known regarding the phylogenetic relationships and molecular evolution of this genus in China. We used nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) and chloroplast DNA (cpDNA) trnL-F sequences to reconstruct the phylogenetic relationship and estimate the divergence time of Blumea in China. The results indicated that the genus Blumea is monophyletic and it could be divided into two clades that differ with respect to the habitat, morphology, chromosome type, and chemical composition of their members. The divergence time of Blumea was estimated based on the two root times of Asteraceae. The results indicated that the root age of Asteraceae of 76–66 Ma may maintain relatively accurate divergence time estimation for Blumea, and Blumea might had diverged around 49.00–18.43 Ma. This common ancestor had an explosive expansion during the Oligocene and Miocene and two major clades were differentiated during these epochs 29.60 Ma (17.76–45.23 Ma 95% HPD (Highest Posterior Density). Evidence from paleogeography and paleoclimate studies has confirmed that Blumea experienced differentiation and an explosive expansion during the Oligocene and Miocene.
Blumea balsamifera (Ai-na-xiang) is used as an important plant source of natural borneol, which is widely used in the pharmaceutical industry. The aim of this study was to establish the methods based on near infrared (NIR) spectroscopy for determining the geographical origin of B. balsamifera, as well as developing a method for the quantitative rapid analysis of the active pharmaceutical ingredients (APIs). A total of 109 samples were collected from China in 2013 and arbitrarily divided into calibration and prediction sets using the Kennard–Stone algorithm. The l-borneol and total flavone contents of the samples were measured by gas chromatography and ultraviolet-visible spectroscopy, respectively. The NIR spectra were acquired using an integrating sphere and a partial least squares (PLS) model was built using the optimum wavelength regions, which were selected using a synergy interval partial least-squares (SiPLS) algorithm. The root mean square errors of prediction of the l-borneol and total flavone models were 0.0779 and 2.2694 mg/g, with R2 of 0.9069 and 0.8013, respectively. A discriminant model to determine the geographical origin of B. balsamifera (Guizhou and Hainan) was also established using a partial least squares discriminant analysis method with an optimum pretreatment method. The prediction accuracy rate of the model was 100%. NIR spectroscopy can be used as a reliable and environmentally friendly method to determine the API and the origin of different B. balsamifera samples.
Bufadienolide-like chemicals are mostly composed of the active ingredient of Chansu and they have anti-inflammatory, tumor-suppressing, and anti-pain activities; however, their mechanism is unclear. This work used bioinformatics analysis to study this mechanism via gene expression profiles of bufadienolide-like chemicals: (1) Differentially expressed gene identification combined with gene set variation analysis, (2) similar small -molecule detection, (3) tissue-specific co-expression network construction, (4) differentially regulated sub-networks related to breast cancer phenome, (5) differentially regulated sub-networks with potential cardiotoxicity, and (6) hub gene selection and their relation to survival probability. The results indicated that bufadienolide-like chemicals usually had the same target as valproic acid and estradiol, etc. They could disturb the pathways in RNA splicing, the apoptotic process, cell migration, extracellular matrix organization, adherens junction organization, synaptic transmission, Wnt signaling, AK-STAT signaling, BMP signaling pathway, and protein folding. We also investigated the potential cardiotoxicity and found a dysregulated subnetwork related to membrane depolarization during action potential, retinoic acid receptor binding, GABA receptor binding, positive regulation of nuclear division, negative regulation of viral genome replication, and negative regulation of the viral life cycle. These may play important roles in the cardiotoxicity of bufadienolide-like chemicals. The results may highlight the potential anticancer mechanism and cardiotoxicity of Chansu, and could also explain the ability of bufadienolide-like chemicals to be used as hormones and anticancer and vasoprotectives agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.