Extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) strains are emerging around the world as a source of resistance to β-lactam antibiotics such as ampicillin, cefotaxime, and ceftazidime. mcr-1 is a novel plasmid-mediated gene conferring resistance to colistin. The aim of this study was to investigate the prevalence of ESBL-EC mcr-1 of chicken origin in the different provinces of China during 2008–2014. Overall, 341 of 821 isolates were determined to be ESBL-EC strains, and the proportion of ESBL-positive strains almost doubled from 2008 to 2014. The findings of our study revealed regional differences, with significantly more ESBL-EC isolates from stockbreeding in concentrated poultry industry areas in Shandong than from the other four provinces. The ESBL type analysis showed that blaCTX-M was the most prevalent ESBL-encoding gene (92.7%). In total, twelve subtypes of CTX-M genes were detected, among which, blaCTX-M-55 (34.3%) and blaCTX-M-65 (17.9%) were the major identified genotypes. In addition, blaTEM and pAmpC genes were carried by 86.0% and 8.5% of isolates, respectively. In this study, we also observed 44 E. coli isolates with multiple ST types (ST46, ST1286, ST10, ST29, ST101, and ST354) carrying mcr-1, and the majority of mcr-1–carrying plasmids were IncI2. The whole-genome sequencing analysis indicated the co-existence of blaCTX-M and mcr-1 in ESBL-EC of both animal and human origin, and phylogenetic analysis further revealed their close relationship, especially several isolates sharing a small number of SNPs, which suggested the increasing trend of co-existence and transmission of ESBL and mcr-1 in both clinical medicine and veterinary medicine.
Supplemental Digital Content is available in the text.
Natural antisense transcripts (NATs) exist ubiquitously in mammalian genomes and play roles in the regulation of gene expression. However, both the existence of bidirectional antisense RNA regulation and the possibility of proteincoding genes that function as antisense RNAs remain speculative. Here, we found that the protein-coding gene, deoxyhypusine synthase (DHPS), as the NAT of WDR83, concordantly regulated the expression of WDR83 mRNA and protein. Conversely, WDR83 also regulated DHPS by antisense pairing in a concordant manner. WDR83 and DHPS were capable of forming an RNA duplex at overlapping 3′ untranslated regions and this duplex increased their mutual stability, which was required for the bidirectional regulation. As a pair of protein-coding cis-sense/antisense transcripts, WDR83 and DHPS were upregulated simultaneously and correlated positively in gastric cancer (GC), driving GC pathophysiology by promoting cell proliferation. Furthermore, the positive relationship between WDR83 and DHPS was also observed in other cancers. The bidirectional regulatory relationship between WDR83 and DHPS not only enriches our understanding of antisense regulation, but also provides a more complete understanding of their functions in tumor development.
Purpose: The role and clinical implication of the transmembrane protein with EGF and two follistatin motifs 2 (TMEFF2) in gastric cancer is poorly understood.Experimental Design: Gene expression profile analyses were performed and Gene Set Enrichment Analysis (GSEA) was used to explore its gene signatures. AGS and MKN45 cells were transfected with TMEFF2 or control plasmids and analyzed for gene expression patterns, proliferation, and apoptosis. TMEFF2 expression was knocked down with shRNAs, and the effects on genome stability were assessed. Interactions between TMEFF2 and SHP-1 were determined by mass spectrometry and immunoprecipitation assays.Results: Integrated analysis revealed that TMEFF2 expression was significantly decreased in gastric cancer cases and its expression was negatively correlated with the poor pathologic stage, large tumor size, and poor prognosis. GSEA in The Cancer Genome Atlas (TCGA) and Jilin datasets revealed that cell proliferation, apoptosis, and DNA damage-related genes were enriched in TMEFF2 lower expression patients. Gain of TMEFF2 function decreased cell proliferation by increasing of apoptosis and blocking of cell cycle in gastric cancer cells. The protein tyrosine phosphatase SHP-1 was identified as a binding partner of TMEEF2 and mediator of TMEFF2 function. TMEFF2 expression positively correlated with SHP-1, and a favorable prognosis was more likely in patients with gastric cancer with higher levels of both TMEFF2 and SHP-1.Conclusion: TMEFF2 acts as a tumor suppressor in gastric cancer through direct interaction with SHP-1 and can be a potential biomarker of carcinogenesis. Clin Cancer Res; 20(17); 4689-704. Ó2014 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.