INTRODUCTION It has long been an interesting question whether a living cell can be constructed from scratch in the lab, a goal that may not be realized anytime soon. Nonetheless, with advances in DNA synthesis technology, the complete genetic material of an organism can now be synthesized chemically. Hitherto, genomes of several organisms including viruses, phages, and bacteria have been designed and constructed. These synthetic genomes are able to direct all normal biological functions, capable of self-replication and production of offspring. Several years ago, a group of scientists worldwide formed an international consortium to reconstruct the genome of budding yeast, Saccharomyces cerevisiae . RATIONALE The synthetic yeast genome, designated Sc2.0, was designed according to a set of arbitrary rules, including the elimination of transposable elements and incorporation of specific DNA elements to facilitate further genome manipulation. Among the 16 S. cerevisiae chromosomes, chromosome XII is unique as one of the longest yeast chromosomes (~1 million base pairs) and additionally encodes the highly repetitive ribosomal DNA locus, which forms the well-organized nucleolus. We report on the design, construction, and characterization of chromosome XII, the physically largest chromosome in S. cerevisiae. RESULTS A 976,067–base pair linear chromosome, synXII, was designed based on the native chromosome XII sequence of S. cerevisiae , and chemically synthesized. SynXII was assembled using a two-step method involving, successive megachunk integration to produce six semisynthetic strains, followed by meiotic recombination–mediated assembly, yielding a full-length functional chromosome in S. cerevisiae. Minor growth defect “bugs” detected in synXII were caused by deletion of tRNA genes and were corrected by introducing an ectopic copy of a single tRNA gene. The ribosomal gene cluster (rDNA) on synXII was left intact during the assembly process and subsequently replaced by a modified rDNA unit. The same synthetic rDNA unit was also used to regenerate rDNA at three distinct chromosomal locations. The rDNA signature sequences of the internal transcribed spacer (ITS), often used to determine species identity by standard DNA barcoding procedures, were swapped to generate a Saccharomyces synXII strain that would be identified as S. bayanus. Remarkably, these substantial DNA changes had no detectable phenotypic consequences under various laboratory conditions. CONCLUSION The rDNA locus of synXII is highly plastic; not only can it be moved to other chromosomal loci, it can also be altered in its ITS region to masquerade as a distinct species as defined by DNA barcoding, used widely in taxonomy. The ability to perform “species morphing” reported here presumably reflects the degree of evolutionary flexibility by which these ITS regions change. However, this barcoding region is clearly not infinitely flexible, as only relatively modest intragenus base changes were tolerated. More severe intergenus differences in ITS sequence did not result in functional rDNAs, probably because of defects in rRNA processing. The ability to design, build, and debug a megabase-sized chromosome, together with the flexibility in rDNA locus position, speaks to the remarkable overall flexibility of the yeast genome. Hierarchical assembly and subsequent restructuring of synXII. SynXII was assembled in two steps: First, six semisynthetic synXII strains were built in which segments of native XII DNA were replaced with the corresponding designer sequences. Next, the semisynthetic strains were combined withmultiple rounds ofmating/sporulation, eventually generating a single strain encoding fulllength synXII.The rDNA repeats were removed, modified, and subsequently regenerated at distinct chromosomal locations for species morphing and genome restructuring.
In order to enhance lutein accumulation and to explain the reasons for the difference in lutein accumulation under photoautotrophic and heterotrophic conditions, different culture modes and the associated transcriptome profiles were investigated in Auxenochlorella protothecoides. The heterotrophic-photoautotrophic transition culture mode was investigated for lutein accumulation, changing from organic carbon to increase biomass in dark fermentation to irradiation under nitrogen rich conditions. This strategy increased the lutein content 10 times along with chloroplast regeneration and little biomass loss in 48 h. The highest lutein productivity and production in the heterotrophic-photoautotrophic transition culture reached 12.36 mg/L/day and 34.13 mg/L respectively within seven days. Furthermore, compared to the photoautotrophic conditions, most genes involved in lutein biosynthesis and photosystem generation were down-regulated during heterotrophic growth. By contrast, two β-ring hydroxylases were transiently upregulated, while violaxanthin de-epoxidase and zeaxanthin epoxidase were mostly downregulated, which explained the extremely low lutein content of heterotrophic cells. Nevertheless, the lutein proportion in total carotenoids reached nearly 100%. This study is the first to our knowledge to report on a comparative transcriptome analysis of lutein biosynthesis, and it provides a promising strategy to boost lutein production in A. protothecoides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.