Considering the existing issues of traditional blood pressure (BP) measurement methods and non-invasive continuous BP measurement techniques, this study aims to establish the systolic BP and diastolic BP estimation models based on machine learning using pulse transit time and characteristics of pulse waveform. In the process of model construction, the mean impact value method was introduced to investigate the impact of each feature on the models and the genetic algorithm was introduced to implement parameter optimization. The experimental results showed that the proposed models could effectively describe the nonlinear relationship between the features and BP and had higher accuracy than the traditional methods with the error of 3.27 ± 5.52 mmHg for systolic BP and 1.16 ± 1.97 mmHg for diastolic BP. Moreover, the estimation errors met the requirements of the Advancement of Medical Instrumentation and British Hypertension Society criteria. In conclusion, this study was helpful in promoting the practical application of methods for non-invasive continuous BP estimation models.
The degradation efficiency of organic contaminants and their associated metabolites by co-culture of microbes is mainly limited by toxic intermediates from co-metabolic degradation. In this study, we investigated the degradation of β-cypermethrin (β-CY) and 3-phenoxybenzoic acid (3-PBA) by co-culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4, as well as the influences of β-CY and 3-PBA metabolites on their degradation and the growth of strains B-1 and M-4. Our results indicated that 100 mg/L β-CY was degraded by 78.85%, and 3-PBA concentration was 0.05 mg/L after 72 h. Compared with using only strain B-1, the half-life (t1/2) of β-CY by using the two strains together was shortened from 84.53 h to 38.54 h, and the yield coefficient of 3-PBA was decreased from 0.846 to 0.001. At 100 mg/L of 3-PBA and gallic acid, β-CY and 3-PBA degradation were only 17.68% and 40.45%, respectively. As the toxic intermediate derived from co-metabolic degradation of β-CY by strain B-1, 3-PBA was efficiently degraded by strain M-4, and gallic acid, as the toxic intermediate from co-metabolic degradation of 3-PBA by strain M-4, was efficiently degraded by strain B-1. These results provided a promising approach for efficient biodegradation of β-CY and 3-PBA.
The effects of wheat-gluten hydrolysates (WGH) and their ultrafiltration fractions on multiple-stress tolerance and ethanol production in yeast during very-high-gravity (VHG) fermentation were examined. The results showed that WGH and WHG-ultrafiltration-fraction supplementations could significantly enhance the growth and viability of yeast and further improve the tolerance of yeast to osmotic stress and ethanol stress. The addition of MW < 1 kDa fractions led to 51.08 and 21.70% enhancements in cell-membrane integrity, 30.74 and 10.43% decreases in intracellular ROS accumulation, and 34.18 and 26.16% increases in mitochondrial membrane potential (ΔΨ) in yeast under osmotic stress and ethanol stress, respectively. Moreover, WGH and WHG-ultrafiltration-fraction supplementations also improved the growth and ethanol production of yeast during VHG fermentation, and supplementation with the <1 kDa fraction resulted in a maximum biomass of 16.47 g/L dry cell and an ethanol content of 18.50% (v/v) after VHG fermentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.