Indium-incorporation with InxGa1-xN layers on GaN-microdisks has been systematically studied against growth parameters by plasma-assisted molecular beam epitaxy. The indium content (x) of InxGa1-xN layer increased to 44.2% with an In/(In + Ga) flux ratio of up to 0.6 for a growth temperature of 620 °C, and quickly dropped with a flux ratio of 0.8. At a fixed In/(In + Ga) flux ratio of 0.6, we found that the indium content decreased as the growth temperature increased from 600 °C to 720 °C and dropped to zero at 780 °C. By adjusting the growth parameters, we demonstrated an appropriate InxGa1-xN layer as a buffer to grow high-indium-content InxGa1-xN/GaN microdisk quantum wells for micro-LED applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.