The development of ultrastable and highly fluorescent heteroatoms-doped graphene quantum dots (GQDs) for bioimaging remains a challenge due to the fluorescence quenching caused by binding between the heteroatoms-based functional groups of the GQDs and common metal ions in biological systems. Here, we developed a facile hydrothermal method to prepare nitrogen−sulfur doped GQDs (NS-GQDs). The fluorescence signals of the NS-GQDs are highly stable in the existence of different metal ions. Two natural products, aspartic acid and cysteine, were utilized as the carbon precursors and heteroatomic (nitrogen and sulfur) sources. The produced NS-GQDs showed a quantum yield up to 19.3 ± 1.7% with a maximum emission of 480 nm under the excitation of 400 nm. The elemental analysis, including X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS), and Fourier-transform infrared spectroscopy (FTIR), were performed to characterize the composition and surface groups of NS-GQDs. Additionally, the NS-GQDs not only showed notable photostability, but also thermostability and chemical stability. Moreover, the NS-GQDs demonstrated very low cellular cytotoxicity in vitro. Finally, the NS-GQDs were applied for fluorescence imaging of cells, which also exhibited excellent fluorescent stability even with treatment of copper ions. The results indicated that the developed novel NS-GQDs have a promising potential to be used as ultrastable fluorescent agent in the field of bioimaging and biosensing.
Graphene quantum dots (GQDs) are a subset of fluorescent nanomaterials that have gained recent interest due to their photoluminescence properties and low toxicity and biocompatibility features for bioanalysis and bioimaging. However, it is still a challenge to prepare highly near-infrared (NIR) fluorescent GQDs using a facile pathway. In this study, NIR GQDs were synthesized from the biomass-derived organic molecule ciscyclobutane-1,2-dicarboxylic acid via one-step pyrolysis. The resulting GQDs were then characterized by various analytical methods such as UV−Vis absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Moreover, the photostability and stability over a wide pH range were also investigated, which indicated the excellent stability of the prepared GQDs. Most importantly, two peaks were found in the fluorescence emission spectra of the GQDs, one of which was located in the NIR region of about 860 nm. Finally, the GQDs were applied for cell imaging with human breast cancer cell line, MCF-7, and cytotoxicity analysis with mouse macrophage cell line, RAW 246.7. The results showed that the GQDs entered the cells through endocytosis on the fluorescence images and were not toxic to the cells up to a concentration of 200 μg/mL. Thus, the developed GQDs could be a potential effective fluorescent bioimaging agent. Finally, the GQDs depicted fluorescence quenching when treated with mercury metal ions, indicating that the GQDs could be used for mercury detection in biological samples as well.
Nanozymes are a class of artificial enzymes that have dimensions in the nanometer range and can be composed of simple metal and metal oxide nanoparticles, metal nanoclusters, dots (both quantum and carbon), nanotubes, nanowires, or multiple metal-organic frameworks (MOFs). They exhibit excellent catalytic activities with low cost, high operational robustness, and a stable shelf-life. More importantly, they are amenable to modifications that can change their surface structures and increase the range of their applications. There are three main classes of nanozymes including the peroxidase-like, the oxidase-like, and the antioxidant nanozymes. Each of these classes catalyzes a specific group of reactions. With the development of nanoscience and nanotechnology, the variety of applications for nanozymes in diverse fields has expanded dramatically, with the most popular applications in biosensing. Nanozyme-based novel biosensors have been designed to detect ions, small molecules, nucleic acids, proteins, and cancer cells. The current review focuses on the catalytic mechanism of nanozymes, their application in biosensing, and the identification of future directions for the field.
A simple and ultra-sensitive fluorescent sensor was developed to detect the enzymatic activity of Exo III with a limit of detection of 0.001 U mL−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.