Abstract-We introduce a deep network architecture called DerainNet for removing rain streaks from an image. Based on the deep convolutional neural network (CNN), we directly learn the mapping relationship between rainy and clean image detail layers from data. Because we do not possess the ground truth corresponding to real-world rainy images, we synthesize images with rain for training. In contrast to other common strategies that increase depth or breadth of the network, we use image processing domain knowledge to modify the objective function and improve deraining with a modestly-sized CNN. Specifically, we train our DerainNet on the detail (high-pass) layer rather than in the image domain. Though DerainNet is trained on synthetic data, we find that the learned network translates very effectively to real-world images for testing. Moreover, we augment the CNN framework with image enhancement to improve the visual results. Compared with state-of-the-art single image deraining methods, our method has improved rain removal and much faster computation time after network training.
In this paper, a new probabilistic method for image enhancement is presented based on a simultaneous estimation of illumination and reflectance in the linear domain. We show that the linear domain model can better represent prior information for better estimation of reflectance and illumination than the logarithmic domain. A maximum a posteriori (MAP) formulation is employed with priors of both illumination and reflectance. To estimate illumination and reflectance effectively, an alternating direction method of multipliers is adopted to solve the MAP problem. The experimental results show the satisfactory performance of the proposed method to obtain reflectance and illumination with visually pleasing enhanced results and a promising convergence rate. Compared with other testing methods, the proposed method yields comparable or better results on both subjective and objective assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.