Tantalum nitride (Ta3 N5 ) highlights an intriguing paradigm for converting solar energy into chemical fuels. However, its photocatalytic properties are strongly governed by various intrinsic/extrinsic defects. In this work, we successfully prepared a series of Mg-doped mesoporous Ta3 N5 using a simple method. The photocatalytic and photoelectrochemical properties were investigated from the viewpoint of how defects such as accumulation of oxygen and nitrogen vacancies contribute to the catalytic activity. Our findings suggest that Mg doping is accompanied by an accumulation of oxygen species and a simultaneous elimination of nitrogen vacancies in Ta3 N5 . These oxygen species in Ta3 N5 induce delocalized shallow donor states near the conduction band minimum and are responsible for high electron mobility. The superior photocatalytic activity of Mg-doped Ta3 N5 can then be understood by the improved electron-hole separation as well as the lack of nitrogen vacancies, which often serve as charge-recombination centers.
Separation of photo-generated charges has played a crucial role in controlling the actual performance of a photocatalytic system. Here we have successfully fabricated g-C3N4/TiO2-B nanowire/tube heterostructures through facile urea degradation reactions. Owing to the effective separation of photo-generated charges associated with the type-II band alignment and intimate interfacial contacts between g-C3N4 and TiO2-B nanowires/tubes, such heterostructures demonstrate an improved photocatalytic activity over individual moieties. Synthetic conditions such as hydrothermal temperatures for the preparation of TiO2-B and the weight ratio of TiO2-B to urea were systematically investigated. A high crystallinity of TiO2-B as well as the proper growth of g-C3N4 on its surface are critical factors for a better performance. Our simple synthetic method and the prolonged lifetime of photo-generated charges signify the importance of type-II heterostructures in the photocatalytic applications.
Layered semiconductor photocatalysts have been found to exhibit promising performance levels, probably linked to their interlayer framework that facilitates separation of charge carriers and the reduction/oxidation reactions. Layered titanates, however, generally demonstrate activities under UV irradiation, and therein lies the strong desire to extend their activity into the visible light region. Here, we investigated a series of layered perovskite by doping Sr2TiO4 with Cr and/or La in the hope to improve their visible light responses. Their crystal structures and other physicochemical properties were systematically explored. Our results show that La and Cr can be successfully accommodated in the layered structure and Cr is an efficient dopant for the extension of visible light absorbance. Much enhanced photocatalytic hydrogen evolution was observed after doping and was found to be composition-dependent. The highest hydrogen production rate approaches 97.7 μmol/h for Sr2Ti0.95Cr0.05O4-δ under full range irradiation (λ ≥ 250 nm) and 17 μmol/h for Sr2Ti0.9Cr0.1O4-δ under visible light irradiation (λ ≥ 400 nm), corresponding to an apparent quantum efficiency of 0.16% and 0.05%, respectively. Theoretical calculation reveals that the improved optical and photocatalytic properties are owing to a newly formed spin-polarized valence band from Cr 3d orbitals. The decreased unit cell parameters, reduced band gaps as well as anisotropic properties of layered architectures are likely the reasons for a better activity. Nevertheless, instability of these compounds in the presence of moisture and CO2 was also noticed, suggesting that protective atmospheres are needed for the storage of these photocatalysts.
Photocatalytic water splitting is an appealing process for solar energy conversions yet it is often limited by the slow oxidation of water to oxygen half‐reaction. Here we performed an investigation on N‐doped Sr4Nb2O9 as a water oxidation photocatalyst. Our results show that N doping is an effective approach to improve the visible‐light response of Sr4Nb2O9. Efficient photocatalytic oxygen production was observed after N doping, and the highest production rate of ∼27 μmol h−1 under visible‐light irradiation corresponds to an apparent quantum efficiency of ∼0.31 %. Clear anodic photocurrent can be generated under visible‐light illumination, and the flat‐band potential was determined to be ∼−1.25 V vs. Ag/AgCl at pH 7. Theoretical calculations reveal that N doping introduces additional valence bands and is responsible for the visible‐light response. Variations in light absorption and photo‐oxidation performance can be controlled by modifying these valence band positions using different nitridation temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.