In this report, ternary titanium dioxide (TiO2)/carbon nanotubes (CNTs)/reduced graphene oxide (rGO) composites were fabricated by a facile and environmentally friendly one-pot solvethermal method for the removal of Rhodamine B (RhB). Its structures were represented by X-ray powder diffraction (XRD), Raman spectrometry, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic performance was tested by the degradation efficiency of RhB under UV-vis light irradiation. The experimental results indicated that photocatalytic activity improved as the ratio of CNTs:TiO2 ranged from 0.5% to 3% but reduced when the content increased to 5% and 10%, and the TiO2/CNTs/rGO-3% composites showed superior photocatalytic activity compared with the binary ones (i.e., TiO2/CNTs, TiO2/rGO) and pristine TiO2. The rate constant k of the pseudo first-order reaction was about 1.5 times that of TiO2. The improved photocatalytic activity can be attributed to the addition of rGO and CNTs, which reduced the recombination of photo-induced electron-hole pairs, and the fact that CNTs and rGO, with a high specific surface area and high adsorption ability to efficiently adsorb O2, H2O and organics, can increase the hydroxyl content of the photocatalyst surface.
A series of “ravine-like” boron carbonitrides (abbreviation: BCN) were synthesized by a green precursor pyrolysis method at different temperatures (about 700–1100 °C). The highest electrochemical performance of BCN-800 (Named BCN-temperature) electrode was observed, because the “ravine-like” structure can significantly increase the contact area and improve the wettability between electrode and electrolyte. The BCN electrode exhibited ultrahigh specific capacitance 805.9 F/g (at a current density of 0.2 A/g), excellent rate capability, and good cycling stability (91%) after 3000 cycles at a current density of 8 A/g, showing high potential applications in supercapacitors.
The unique structure
of nickel-decorated
and nitrogen-doped carbon
nanotubes (Ni-NCNTs) was prepared by hydrothermal method. Nickel acetate
tetrahydrate, graphitic carbon nitride (g-C3N4), and isopropanol were used as raw materials in this moderate method.
The Ni-NCNTs were synthesized successfully by calcination under the
protection of nitrogen. Under different pyrolysis temperatures, carbon
nanotubes begin to form at 700 °C, and Ni-NCNTs also show the
best hydrogen evolution reaction performance. At a current density
of 10 mA/cm2, the overpotential has reached 378 mV and
the Tafel slope of the sample is 139 mV/dec. This work successfully
presented that it is feasible to introduce Ni nanoparticles and nitrogen
into CNTs to enhance the electrocatalytic performance, while the doping
of transition metals, Ni, and nitrogen improves the conductivity of
CNTs and increases the contact of active sites.
Boron carbonitrides (BCN) have attracted great interest in superhard or energy storage materials. In this work, thin BCN sheets were synthesized at 250 °C by a facile and green solvothermal method. The structure and morphology were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Based on the results of electrochemical experiments, the thin BCN sheet exhibited excellent capacitance performance (343.1 F/g at a current density of 0.5 A/g) and cycling stability (90%), which showed high potential applications in supercapacitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.