SO2, previously known as the product of industrial waste, has recently been proven to be a novel gasotransmitter in the cardiovascular system. It is endogenously produced from the metabolism pathway of sulfur-containing amino acids in mammalians. Endogenous SO2 acts as an important controller in the regulation of many biological processes including cardiovascular physiological and pathophysiological events. Recently, the studies on the regulatory effect of endogenous SO2 on cell apoptosis and its pathophysiological significance have attracted great attention. Endogenous SO2 can regulate the apoptosis of vascular smooth muscle cells, endothelial cells, cardiomyocytes, neuron, alveolar macrophages, polymorphonuclear neutrophils and retinal photoreceptor cells, which might be involved in the pathogenesis of hypertension, pulmonary hypertension, myocardial injury, brain injury, acute lung injury, and retinal disease. Therefore, in the present study, we described the current findings on how endogenous SO2 is generated and metabolized, and we summarized its regulatory effects on cell apoptosis, underlying mechanisms, and pathophysiological relevance.
Importance
Pathogenic variants in the RBM20 gene are associated with aggressive dilated cardiomyopathy (DCM). Recently, RBM20 was found to be associated with left ventricular non‐compaction cardiomyopathy (LVNC). Thus far, only five families with LVNC have been reported to carry variants in RBM20. It remains unknown whether the variants in RBM20 associated with DCM can also cause LVNC.
Objective
To elucidate the causative RBM20 variant in two unrelated patients with both LVNC and DCM, and to identify the clinical characteristics associated with variants in RBM20.
Methods
Trio whole‐exome sequencing (WES) was performed. Variants were filtered and classified in accordance with the guidelines of the American College of Medical Genetics and Genomics (ACMG).
Results
We identified two distinct de novo variants in RBM20 (one per patient) in these two patients with LVNC. Both variants have been reported in patients with DCM, without the LVNC phenotype. Patient 1 was an 11‐year‐old girl who had DCM, LVNC, and heart failure; the ratio of noncompacted‐to‐compacted myocardium was 2.7:1. A de novo heterozygous variant c.1907G>A (p.Arg636His) in exon 9 was identified in this patient. Patient 2 was a 13‐year‐old boy who had clinical phenotypes identical to those of Patient 1; the ratio of noncompacted‐to‐compacted myocardium was 3.2:1 in this patient. WES revealed a de novo heterozygous variant c.1909A>G (p.Ser637Gly) in exon 9. Both variants were previously characterized as pathogenic, and our study classified them as pathogenic variants based on the ACMG guidelines.
Interpretation
We found that two patients with LVNC had variants in RBM20. Our results extended the clinical spectrum of the two RBM20 variants and illustrated that the same variant in RBM20 can cause DCM, with or without the LVNC phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.