Sphingolipids (SLs) are vital for cells as forming membrane and transducing signals. The first step for de novo biosynthesis of SLs is catalyzed by the pyridoxal-5′phosphate (PLP)-dependent enzyme serine palmitoyltransferase (SPT), which has been proven to be a promising drug target for treating various diseases. However, there are few SPT-specific inhibitors have been identified so far. Myriocin, a natural fungal product, is confirmed as the most potent inhibitor of SPT and has been widely used, but studies of its molecular mechanism are still underway. Besides, there is no intact co-crystal structure of SPT-binding myriocin until now. Aiming to uncover the interaction mechanism between SPT-and PLP-binding myriocin at the molecular level, a systematic computational strategy was performed in this present study. Firstly, covalent docking was implemented to preliminarily predict the binding pose SPT/PLP-myriocin aldimine and its structurally similar intermediate SPT/PLP-βketoacid aldimine. Secondly, two binding complexes were treated as initial structures to perform molecular dynamics simulations and binding free energy calculations. The calculated docking scores and predicted binding energies were consistent with the reported bioactivities. Finally, the binding mechanism of myriocin binding with SPT was meticulously described, and the key residues making favorable contributions were highlighted. Taken together, the current study could provide some important information and valuable guidance for further rational screening, design, and modification of potent specific SPT inhibitors.
Phosphatidylinositol‐3‐kinase (PI3K) is important for cell proliferation, differentiation, and apoptosis, and the diverse physiological roles of different PI3K isoforms have highlighted the significance of the development of PI3Kδ inhibitors. A large number of PI3Kδ inhibitors have been reported after the FDA approval of Idelalisib, but the clinical use of Idelalisib was limited because of its serious side effects. Therefore, great efforts have been made on the development of PI3Kδ inhibitors with higher selectivity and lower toxicity, but there is no new PI3Kδ inhibitor coming into the market so far. Even so, as the first listed PI3K inhibitor, Idelalisib could be used as an effective tool to investigate the selective inhibition mechanism of PI3Kδ. Thus, in this study, a modeling strategy integrated 3D‐QSAR, pharmacophore model, and molecular dynamics simulation was employed to reveal the key chemical characteristics of Idelalisib analogs and the binding pattern between the inhibitors and PI3Kδ. First, the CoMFA model with high statistical significance was built to reveal the general structure–activity relationships. And then, a reliable pharmacophore model with a robust discrimination capability was constructed to expound the main chemical characteristics of the PI3Kδ inhibitors. Finally, molecular dynamics simulation was conducted to explore the binding modes and some key residues refer to δ‐selective binding were highlighted with binding‐free energy calculation. In summary, these models and results would provide some effective help for the discovery or the rational design of novel PI3Kδ inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.