Anionic, monolayer-protected gold nanoparticles (AuNPs) have been shown to nondisruptively penetrate cellular membranes. Here, we show that a critical first step in the penetration process is potentially the fusion of such AuNPs with lipid bilayers. Free energy calculations, experiments on unilamellar and multilamellar vesicles, and cell studies all support this hypothesis. Furthermore, we show that fusion is only favorable for AuNPs with core diameters below a critical size that depends on the monolayer composition.
The water-solvable FePt nanoparticles of 3, 6, and 12 nm in diameter (3 nm-, 6 nm-, and 12 nm-FePt) were synthesized and applied as a dual modality contrast agent for CT/MRI molecular imaging. These nanoparticles present excellent biocompatibility and hemocompatibility in all test concentrations for the imaging contrast. The biodistribution analysis revealed the highest serum concentration and circulation half-life for 12 nm-FePt, followed by 6 nm-FePt then 3 nm-FePt. Thus, the 3 nm-FePt showed higher brain concentrations. Anti-Her2 antibody conjugated FePt nanoparticles demonstrated molecular expression dependent CT/MRI dual imaging contrast effect in MBT2 cell line and its Her2/neu gene knock out counterpart. Selective contrast enhancement of Her2/neu overexpression cancer lesions in both CT and MRI was found in tumor bearing animal after tail vein injection of the nanoparticles. The 12 nm-FePt outperformed 3 nm-FePt in both imaging modalities. These results indicate the potential of FePt nanoparticles to serve as novel multimodal molecular imaging contrast agents in clinical settings.
Erythrocytes are attractive as potential cell-based drug carriers because of their abundance and long lifespan in vivo. Existing methods for loading drug cargos into erythrocytes include hypotonic treatments, electroporation, and covalent attachment onto the membrane, all of which require ex vivo manipulation.Here, we characterized the properties of amphiphilic gold nanoparticles (amph-AuNPs), comprised of a ∼2.3 nm gold core and an amphiphilic ligand shell, which are able to embed spontaneously within erythrocyte membranes and might provide a means to load drugs into red blood cells (RBCs) directly in vivo. Particle interaction with RBC membranes occurred rapidly at physiological temperature. We further show that amph-AuNP uptake by RBCs was limited by the glycocalyx and was particularly influenced by sialic acids on cell surface proteoglycans. Using a reductionist model membrane system with synthetic lipid vesicles, we confirmed the importance of membrane fluidity and the glycocalyx in regulating amph-AuNP/ membrane interactions. These results thus provide evidence for the interaction of amph-AuNPs with erythrocyte membranes and identify key membrane components that govern this interaction, providing a framework for the development of amph-AuNP-carrying erythrocyte 'pharmacytes' in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.