Electrochemical water splitting plays a crucial role in the development of clean and renewable energy production and conversion, which is a promising pathway to reduce social dependence on fossil fuels. Thus, highly active, cost‐efficient, and robust catalysts must be developed to reduce the reaction overpotential and increase electrocatalytic efficiency. In this review, recent research efforts toward developing advanced electrocatalysts based on noble metals with outstanding performance for water splitting catalysis, which is mainly dependent on their structure engineering, are summarized. First, a simple description of the water‐splitting mechanism and some promising structure engineering strategies are given, including heteroatom incorporation, strain engineering, interface/hybrid engineering, and single atomic construction. Then, the underlying relationship between noble metal electronic/geometric structure and performance for water splitting is discussed with the assistance of theoretical simulation. Finally, a personal perspective is provided in order to highlight the challenges and opportunities for developing novel electrocatalysts suitable for a wide range of commercial uses in water splitting for structural engineering applications.
Selectively exposing active surfaces and judiciously tuning the near-surface composition of electrode materials represent two prominent means of promoting electrocatalytic performance. Here, a new class of Pt Fe zigzag-like nanowires (Pt-skin Pt Fe z-NWs) with stable high-index facets (HIFs) and nanosegregated Pt-skin structure is reported, which are capable of substantially boosting electrocatalysis in fuel cells. These unique structural features endow the Pt-skin Pt Fe z-NWs with a mass activity of 2.11 A mg and a specifc activity of 4.34 mA cm for the oxygen reduction reaction (ORR) at 0.9 V versus reversible hydrogen electrode, which are the highest in all reported PtFe-based ORR catalysts. Density function theory calculations reveal a combination of exposed HIFs and formation of Pt-skin structure, leading to an optimal oxygen adsorption energy due to the ligand and strain effects, which is responsible for the much enhanced ORR activities. In contrast to previously reported HIFs-based catalysts, the Pt-skin Pt Fe z-NWs maintain ultrahigh durability with little activity decay and negligible structure transformation after 50 000 potential cycles. Overcoming a key technical barrier in electrocatalysis, this work successfully extends the nanosegregated Pt-skin structure to nanocatalysts with HIFs, heralding the exciting prospects of high-effcient Pt-based catalysts in fuel cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.