As a biocompatible material with rich resources and economic benefits, montmorillonite (MMT) has been widely used in antibacterial field as drug carrier and toxin adsorbent. In addition, the distinctive structure...
The treatment of infective or potentially infectious bone defects is a critical problem in the orthopedic clinic. Since bacterial activity and cytocompatibility are always contrary factors, it is hard to have them both in one material. The development of bioactive materials with a good bacterial character and without sacrificing biocompatibility and osteogenic activity, is an interesting and valuable research topic. In the present work, the antimicrobial characteristic of germanium, GeO2 was used to enhance the antibacterial properties of silicocarnotite (Ca5(PO4)2SiO4, CPS). In addition, its cytocompatibility was also investigated. The results demonstrated that Ge–CPS can effectively inhibit the proliferation of both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and it showed no cytotoxicity to rat bone marrow-derived mesenchymal stem cells (rBMSCs). In addition, as the bioceramic degraded, a sustainable release of germanium could be achieved, ensuring long-term antibacterial activity. The results indicated that Ge–CPS has excellent antibacterial activity compared with pure CPS, while no obvious cytotoxicity was observed, which could make it a promising candidate for the bone repair of infected bone defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.