Niebrzydowski tribrackets are ternary operations on sets satisfying conditions obtained from the oriented Reidemeister moves such that the set of tribracket colorings of an oriented knot or link diagram is an invariant of oriented knots and links. We introduce tribracket modules analogous to quandle/biquandle/rack modules and use these structures to enhance the tribracket counting invariant. We provide examples to illustrate the computation of the invariant and show that the enhancement is proper.
Frobenius problem and its many generalizations have been extensively studied in several areas of mathematics. We study semigroups of totally positive algebraic integers in totally real number fields, defining analogues of the Frobenius numbers in this context. We use a geometric framework recently introduced by Aliev, De Loera and Louveaux to produce upper bounds on these Frobenius numbers in terms of a certain height function. We discuss some properties of this function, relating it to absolute Weil height and obtaining a lower bound in the spirit of Lehmer's conjecture for algebraic vectors satisfying some special conditions. We also use a result of Borosh and Treybig to obtain bounds on the size of representations and number of elements of bounded height in such positive semigroups of totally real algebraic integers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.