Semi-active control of buildings and structures with magnetorheological (MR) dampers for earthquake hazard mitigation represents a relatively new research area. In this paper, the Bingham model of MR damper is introduced, and the formula relating the yielding shear stress and the control current of MR dampers is put forward that matches the experimental data. Then an on-line real-time control method for semi-active control of structures with MR dampers is proposed. This method considers the time-delay problem of semi-active control, which can solve distortion of the responses of structures. Finally, through a numerical example of a three-storey reinforced concrete structure, a comparison is made between controlled structure and uncontrolled structure. The calculated results show that MR dampers can reduce the seismic responses of structures effectively. Moreover, the on-line real-time control method is compared with the traditional elastoplastic time-history analysis method, and the efficacy of the on-line real-time control method is demonstrated. In addition, the Levenberg-Marquardt algorithm is used to train the on-line control neural network, and studies show that the algorithm has a very fast convergence rate.
Both experimental and modeling studies of magnetic field induced viscoelastic properties of magnetorheological (MR) elastomers under different loading cases are discussed. Anisotropic MR elastomer (MRE) samples with different concentrations of carbonyl iron powder, natural rubber and additives are fabricated and four MRE vibration mitigation devices are manufactured to investigate the dynamic viscoelastic properties of MREs under varying magnetic fields, displacement amplitudes and frequencies in the shear mode. The characteristics of the dynamic properties of the MRE devices are obtained in terms of the experimentally determined shear storage modulus and loss factor. These results demonstrate that the MREs exhibit variable stiffness and damping properties. Based on the studies of properties of viscoelastic materials and the experimental results of MREs, a parameter model is proposed to describe MRE performances. The four parameters under various working conditions, such as magnetic field, displacement amplitude and frequency, are identified by using the Matlab optimization algorithm. Comparisons between experimental and numerical results are discussed, and the results show that the proposed parameter model can describe the performances of MRE devices very well.
Magnetorheological elastomers (MRE) have been synthesized on the basis of a silicon compound and a mixture of carbonyl iron particles of sizes 3–5 and 40–80 μm. Their viscoelastic properties have been studied by dynamic shear oscillations of various amplitudes on a stress controlled rheometer. The magnetic response of the obtained materials has been examined in a magnetic field applied perpendicular to the shear plane. It has been shown that under applied magnetic field both the storage G′ and loss G″ moduli became strain‐dependent. The values of G′ and G″ decrease with strain, while their ratio (the loss factor), G″/G′, growths with strain. The higher magnetic field is the more pronounced the strain dependence is. At small strain (up to 1%) MRE demonstrate a giant (more than 10 times) increase of the moduli. Some features of hysteretic behavior of MRE under simultaneously applied magnetic field and external mechanical force have been elucidated. Temperature has a negligible effect on viscoelastic properties and stability of the developed MRE. A damper on the basis of MRE has been designed and its properties have been examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.