At many excitatory synapses, AMPA-type receptors (AMPARs) are not statically situated in the membrane, but undergo continuous rounds of endocytosis and exocytosis, referred to as rapid cycling. AMPAR cycling is believed to play a role in certain forms of synaptic plasticity, but the link between cycling and synaptic function is not well understood. We have previously demonstrated that AMPARs cycle in neurons of the inner retina, including amacrine and ganglion cells, and that cycling is inhibited by synaptic activity. Recording from cultured neurons and ON ganglion cells in the flat-mount retina, we now show that rapid cycling is primarily, perhaps exclusively, restricted to AMPARs that contain the GluR2 subunit, and that cycle is confined to extrasynaptic receptors. We also demonstrate a form of plasticity at the ON bipolar cell-ON ganglion cell synapse, whereby synaptic quiescence drives a change in the composition of AMPARs from predominantly GluR2-containing to GluR2-lacking. Finally, we provide evidence linking synaptic receptor composition and cycling, showing that disruption of cycling leads increases the number of GluR2-containing receptors in the ON bipolar-ON ganglion cell synapse. We propose that cycling lowers the number of GluR2-containing receptors at the surface and, consequently, within the synapse. After increased levels of synaptic activity, cycling ceases, and all GluR2-containing receptors are free to go to the surface, where they can be delivered to synapses. Our results suggest that by regulating the cycling of AMPARs, ambient light can modulate the composition of synaptic receptors in ON ganglion cells.
The rapid cycling of AMPA receptors (AMPARs) at the membrane maintains synaptic transmission at a number of CNS synapses and may play a role in several forms of synaptic plasticity. It is unclear, however, how prevalent the trafficking of AMPARs is in the CNS, particularly at synapses not known to exhibit activity-dependent plasticity. Because trafficking is regulated by basal synaptic activity, a question also remains as to how receptor trafficking is modulated at synapses subject to different patterns of synaptic activation. We have investigated whether trafficking of AMPARs occurs in retinal neurons, which are subject to tonic glutamate release. We find two distinct states of AMPAR trafficking in ON ganglion cells. Light adaptation serves to stabilize AMPARs in a noncycling mode. However, dark adaptation for as little as 8 h triggers a switch to a second state of trafficking characterized by rapid cycling. We provide evidence that the activation of AMPARs is critical for switching between cycling and noncycling states. The induction of cycling further appears to be modulated by changes in the function of glutamate receptor 2/3-interacting proteins. Our results suggest that there is a strong link between synaptic activity and AMPAR trafficking in retinal neurons. These results further suggest the existence of a previously unknown form of activity-dependent plasticity in the retina that may be regulated in the course of a normal light/dark cycle.
Gap junctions are widely expressed throughout the retina, and play an important role in the processing of visual information. It has been proposed that horizontal cells express unpaired gap junctions, or hemichannels, in their dendrites, and that current flowing through hemichannels reduces transmembrane voltage at cone terminals, promoting the opening of Ca2+ channels near sites of transmitter release. This model predicts that pharmacological block of gap junctions should reduce the Ca2+ current at the equivalent cone voltage, thereby decreasing the postsynaptic light response. To test this prediction, and estimate the relative magnitude of this effect on third-order cells, we recorded light responses in mouse ganglion cells under photopic conditions and applied two gap junction antagonists, carbenoxolone and the structurally related 18beta-glycyrrhetinic acid (GA). Both carbenoxolone and GA decreased the size of the light response to about 30% of control. Cells that were physiologically identified as ON, OFF, or ON/OFF were equally affected by carbenoxolone/GA. These gap junction blockers did not interfere with gamma-aminobutyric acid (GABA) or glutamate receptors, as they did not affect responses to direct activation of these receptors. Under control conditions, spots larger than 200 microm in diameter activated ganglion cell receptive-field surrounds. Comparing responses to small and large spots before and during carbenoxolone treatment, we found that carbenoxolone did not preferentially inhibit surround antagonism at the ganglion cell level, but instead scaled the responses to all spot sizes. Our results extend the findings of studies in lower vertebrates which showed that light responses in horizontal cells are decreased by carbenoxolone treatment, and support the idea that hemichannels in the outer retina, most likely on horizontal cells, constitute important gates that are critical for allowing light responses to move forward into the retinal circuit. Furthermore, it suggests that ganglion cell surrounds are generated in the inner retina.
Conditioned place preference (CPP) is a commonly used model to detect rewarding effect of drugs. To observe the effect of peripheral electric stimulation (PES) on morphine-induced CPP, we trained the rats with morphine in a CPP paradigm. Twelve hours before the testing phase, rats were given PES via stainless-steel needles with frequencies of 2, 100, or 2/100 Hz, respectively. PES of 2 and 2/100 Hz significantly decreased CPP in morphine-trained animals in a naloxone reversible manner, while PES of 100 Hz, foot shock, needle insertion, or plain restraining, showed no effect. Thus, PES with a low-frequency component (2 Hz) could specifically inhibit the expression of morphine-induced CPP, presumably via activation of opioid receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.