In this work, a dextran modified PDMS microfluidic ELISA device was fabricated. The dextran functionalization was conducted with a simple, economic and fast flow-through process in a fabricated PDMS microfluidic device, and demonstrated significant enhancement of hydrophilicity and efficient covalent immobilization of proteins on the PDMS microchannel surface. The device was used to simultaneously detect multiple important biomarker IL-5, HBsAg, and IgG, showing a limit of detection of 100 pg mL(-1) and a dynamic range of 5 orders of magnitude, which significantly improved the performance of the reported hydrophobic and plasma-treated hydrophilic PDMS flow-through immunoassay devices. The fabricated PDMS device demonstrated its capability for colorimetric detection of proteins through direct observation by human eyes. Thus, this work not only demonstrates great potential to fabricate an economical and sensitive lab-on-chip system for high throughput screening of various infectious diseases, but also provides an opportunity to develop a portable microfluidic ELISA device via human eye examination for heath point-of-care services.
Surface plasmon resonance imaging (SPRi) is a unique microarray method for label‐free and multiplexed bio‐assays. However, it currently cannot be used to detect human serum samples due to its low sensitivity and poor specificity. A poly[oligo(ethylene glycol) methacrylate‐co‐glycidyl methacrylate] (POEGMA‐co‐GMA) brush was synthesized by surface‐initiated atom transfer radical polymerization (SI‐ATRP) and used as a unique supporting matrix for SPRi arrays to efficiently load probe proteins for high sensitivity while reducing nonspecific adsorptions for good selectivity. Results indicate that the polymer brush has a high protein loading capacity (1.8 protein monolayers), low non‐specific protein adsorption (below the SPR detection limit), and high immobilization stability. Three model biomarkers, α‐fetoprotein, carcinoembryonic antigen, and hepatitis B surface antigen were simultaneously detected in human serum samples by a SPRi chip for the first time, showing detection limits of 50, 20, and 100 ng mL−1, respectively. This work demonstrates great potential for a SPRi biochip as a powerful label‐free and high‐throughput detection tool in clinical diagnosis and biological research. Since the SPR detection is limited by the sensing film thickness, this approach particularly offers a unique way to significantly improve the sensitivity in the SPR detecting thickness range.
A hierarchically nanostructured organic-inorganic hybrid substrate comprising randomly oriented ZnO nanorods on glass slide with coaxially tethered dense polymer brush, POEGMA-co-GMA is reported for highly sensitive antibody microassay, achieving excellent detection specificity, and superior detection limit of as low as 100 fg mL(-1) for biomarkers in human serum within a 1 h assay time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.