White matter lesions (WMLs) are a common manifestation of small vessel disease (SVD) in the elderly population. They are associated with an enhanced risk of developing gait abnormalities, poor executive function, dementia, and stroke with high mortality. Hypoperfusion and the resulting endothelial damage are thought to contribute to the development of WMLs. The focus of the present study was the analysis of the microvascular bed in SVD patients with deep WMLs (DWMLs) by using double- and triple-label immunohistochemistry and immunofluorescence. Simultaneous visualization of collagen IV (COLL4)-positive membranes and the endothelial glycocalyx in thick sections allowed us to identify endothelial recession in different types of string vessels, and two new forms of small vessel/capillary pathology, which we called vascular bagging and ghost string vessels. Vascular bags were pouches and tubes that were attached to vessel walls and were formed by multiple layers of COLL4-positive membranes. Vascular bagging was most severe in the DWMLs of cases with pure SVD (no additional vascular brain injury, VBI). Quantification of vascular bagging, string vessels, and the density/size of CD68-positive cells further showed widespread pathological changes in the frontoparietal and/or temporal white matter in SVD, including pure SVD and SVD with VBI, as well as a significant effect of the covariate age. Plasma protein leakage into vascular bags and the white matter parenchyma pointed to endothelial damage and basement membrane permeability. Hypertrophic IBA1-positive microglial cells and CD68-positive macrophages were found in white matter areas covered with networks of ghost vessels in SVD, suggesting phagocytosis of remnants of string vessels. However, the overall vessel density was not altered in our SVD cohort, which might result from continuous replacement of vessels. Our findings support the view that SVD is a progressive and generalized disease process, in which endothelial damage and vascular bagging drive remodeling of the microvasculature.Electronic supplementary materialThe online version of this article (10.1186/s40478-018-0632-z) contains supplementary material, which is available to authorized users.
Background and purpose: Distal hereditary motor neuropathies (dHMNs) are a clinically and genetically heterogeneous group of disorders. The purpose of this study was to identify the genetic distribution of dHMNs in a large cohort of Chinese patients and provide insight into the underlying common pathophysiology of dHMNs. Methods: Multi-gene panel testing or whole-exome sequencing was performed in 70 index patients with clinically diagnosed dHMN between January 2007 and December 2018. The clinical features, Charcot-Marie-Tooth (CMT) neuropathy scores and electrophysiological data at diagnosis were recorded. Results: Twenty-four causative mutations were identified in 70 index patients with dHMN (34.3%). Mutation in the HSPB1 gene was the most common cause of dHMN. Some CMT genes (MPZ, SH3TC2, GDAP1) were found to be related to dHMN with minor sensory involvement. Patients with a dHMNplus phenotype (distal motor neuropathy and additional neurological deficits) carried variants in genes related to hereditary spastic paraplegia, amyotrophic lateral sclerosis and spinal muscular atrophy (FUS, KIF5A, KIF1B, ZFYVE26, DNAJB2). Conclusions: Comprehensive genetic testing of dHMN patients allows for identification of the pathogenic mutation in one-third of cases. Pure motor neuropathies and motor neuropathies with minor sensory involvement share many genes with CMT disease. Causes for dHMN-plus phenotypes overlap with motor neuron disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.