User preference plays a prominent role in many fields, including electronic commerce, social opinion, and Internet search engines. Particularly in recommender systems, it directly influences the accuracy of the recommendation. Though many methods have been presented, most of these have only focused on how to improve the recommendation results. In this paper, we introduce an empirical study of user preferences based on a set of rating data about movies. We develop a simple statistical method to investigate the characteristics of user preferences. We find that the movies have potential characteristics of closure, which results in the formation of numerous cliques with a power-law size distribution. We also find that a user related to a small clique always has similar opinions on the movies in this clique. Then, we suggest a user preference model, which can eliminate the predictions that are considered to be impracticable. Numerical results show that the model can reflect user preference with remarkable accuracy when data elimination is allowed, and random factors in the rating data make prediction error inevitable. In further research, we will investigate many other rating data sets to examine the universality of our findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.