We have produced a stretchable form of silicon that consists of submicrometer single-crystal elements structured into shapes with microscale, periodic, wavelike geometries. When supported by an elastomeric substrate, this "wavy" silicon can be reversibly stretched and compressed to large levels of strain without damaging the silicon. The amplitudes and periods of the waves change to accommodate these deformations, thereby avoiding substantial strains in the silicon itself. Dielectrics, patterns of dopants, electrodes, and other elements directly integrated with the silicon yield fully formed, high-performance "wavy" metal oxide semiconductor field-effect transistors, p-n diodes, and other devices for electronic circuits that can be stretched or compressed to similarly large levels of strain.
This article reviews the properties, fabrication and assembly of inorganic semiconductor materials that can be used as active building blocks to form high-performance transistors and circuits for flexible and bendable large-area electronics. Obtaining high performance on low temperature polymeric substrates represents a technical challenge for macroelectronics. Therefore, the fabrication of high quality inorganic materials in the form of wires, ribbons, membranes, sheets, and bars formed by bottom-up and top-down approaches, and the assembly strategies used to deposit these thin films onto plastic substrates will be emphasized. Substantial progress has been made in creating inorganic semiconducting materials that are stretchable and bendable, and the description of the mechanics of these form factors will be presented, including circuits in three-dimensional layouts. Finally, future directions and promising areas of research will be described.
We have developed an analytical method to determine the coefficient of thermal expansion (CTE) for single wall carbon nanotubes (CNTs). We have found that all CTEs are negative at low and room temperature and become positive at high temperature. As the CNT diameter decreases, the range of negative CTE shrinks. The CTE in radial direction of the CNT is less than that in the axial direction for armchair CNTs, but the opposite holds for zigzag CNTs. The radial CTE is independent of the CNT helicity, while the axial CTE shows a strong helicity dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.